Skip to main content

Exemplary Applications: Novel Exploration Methods

  • Chapter
  • First Online:
  • 407 Accesses

Part of the book series: Lecture Notes in Geosystems Mathematics and Computing ((LNGMC))

Abstract

Next we present two novel exploration methods, thereby using the structure of a methodological circuit (as presented in Sect. 2.6), respectively. We start with inverse gravimetry, which becomes an increasing importance, e.g., in geothermal research. Then we go over to a standard technique in geoexploration, namely reflection seismics, for which a “mollifier inversion procedure” similar to the approach in gravimetry will be developed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland Publishing Company, New York (1973)

    MATH  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  3. Baysal, E., Kosloff, D.D., Sherwood, J.W.C.: A two-way nonreflecting wave equation. Geophysics 49, 132–141 (1984)

    Article  Google Scholar 

  4. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)

    Article  MathSciNet  Google Scholar 

  5. Beylkin, G., Monzón, L.: Approximation of functions by exponential sums revisited. Appl. Comput. Harmon. Anal. 28, 131–149 (2010)

    Article  MathSciNet  Google Scholar 

  6. Blick, C., Freeden, W., Nutz, H.: Gravimetry and Exploration. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 687–752. Birkhäuser/Springer, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  7. Burschäpers, H.C.: Local modeling of gravitational data. Master Thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2013)

    Google Scholar 

  8. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)

    Article  MathSciNet  Google Scholar 

  9. Claerbout, J.: Basic Earth Imaging. Standford University, Standford (2009)

    Google Scholar 

  10. Davis, P.J.: Interpolation and Approximation. Blaisdell, New York (1963)

    MATH  Google Scholar 

  11. Evans, L.D.: Partial Differential Equation, Third Printing. American Mathematical Society, Providence (2002)

    Google Scholar 

  12. Freeden, W.: Geomathematics: Its Role, Its Aim, and Its Potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn, pp. 3–78. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  13. Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65, 1–15 (2013)

    Google Scholar 

  14. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London (2013)

    MATH  Google Scholar 

  15. Freeden, W., Nashed, M.Z.: Inverse gravimetry: Background material and multiscale mollifier approaches. GEM Int. J. Geomath. 9, 199–264 (2018)

    Article  MathSciNet  Google Scholar 

  16. Freeden, W., Nashed, M.Z.: Ill-Posed Problems: Operator Methodologies of Resolution and Regularization. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 201–314. Springer, Basel (2018)

    Chapter  Google Scholar 

  17. Freeden, W., Nashed, M.Z.: Gravimetry As an Ill-Posed Problem in Mathematical Geodesy. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 641–686. Springer, Basel (2018)

    Chapter  Google Scholar 

  18. Freeden, W., Nutz, H.: Mathematische Methoden. In: Bauer, M., Freeden, W., Jacobi, H., Neu, T. (Herausgeber) Handbuch Tiefe Geothermie. Springer, Heidelberg (2014)

    Google Scholar 

  19. Freeden, W., Nutz, H.: Mathematik als Schlüsseltechnologie zum Verständnis des Systems “Tiefe Geothermie”. Jahresber. Deutsch. Math. Vereinigung (DMV) 117, 45–84 (2015)

    MATH  Google Scholar 

  20. Freeden, W., Sansó, F.: Geodesy and Mathematics: Interactions, Acquisitions, and Open Problems. In: International Association of Geodesy Symposia (IAGS), IX Hotine-Marussi Symposium Rome. Springer, Heidelberg (submitted, 2019). Preprint (2019)

    Google Scholar 

  21. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vectorial, and Tensorial Setup. Springer, Heidelberg (2009)

    Book  Google Scholar 

  22. Freeden, W., Schreiner, M.: Mathematical Geodesy: Its Role, Its Potential and Its Perspective. In: Freeden, W., Rummel, R. (eds.) Handbuch der Geodäsie. Springer Reference Naturwissenschaften. Springer, Cham (2019). https://doi.org/10.1007/978-3-662-46900-2_91_1

  23. Freeden, W., Witte, B.: A combined (spline-) interpolation and smoothing method for the determination of the gravitational potential from heterogeneous data. Bull. Géod. 56, 53–62 (1982)

    Article  MathSciNet  Google Scholar 

  24. Freeden, W., Sonar, T., Witte, B.: Gauss as Scientific Mediator Between Mathematics and Geodesy from the Past to the Present. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy, pp. 1–164. Geosystems Mathematics. Springer, Basel (2018)

    Chapter  Google Scholar 

  25. Grafarend, E.W.: Six Lectures on Geodesy and Global Geodynamics. In: Moritz, H., Sünkel, H. (eds.) Proceedings of the Third International Summer School in the Mountains, pp. 531–685 (1982)

    Google Scholar 

  26. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    Article  MathSciNet  Google Scholar 

  27. Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)

    Google Scholar 

  28. Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D. thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2007)

    Google Scholar 

  29. Gutting, M.: Fast Spherical/Harmonic Spline Modeling. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 3, 2nd edn., pp. 2711–2746. Springer, New York (2015)

    Chapter  Google Scholar 

  30. Hackbusch, W.: Entwicklungen nach Exponentialsummen. Technical Report. Max-Planck-Institut für Mahematik in den Naturwissenschaften, Leipzig (2010)

    Google Scholar 

  31. Hackbusch, W., Khoromoskij, B.N., Klaus, A.: Approximation of functions by exponential sums based on the Newton-type optimisation. Technical Report, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2005)

    Google Scholar 

  32. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13, 49–52 (1902)

    Google Scholar 

  33. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  34. Helmert, F.: Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie, I, II. B.G. Teubner, Leipzig (1884)

    Google Scholar 

  35. Hille, E.: Introduction to the general theory of reproducing kernels. Rocky Mountain J. Math. 2, 321–368 (1972)

    Article  MathSciNet  Google Scholar 

  36. Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Wien (2005)

    Google Scholar 

  37. Ilyasov, M.: A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data processing. Ph.D. thesis, Geomathematics Group, University of Kaiserslautern (2011)

    Google Scholar 

  38. Jakobs, F., Meyer, H.: Geophysik – Signale aus der Erde. Teubner, Leipzig (1992)

    Book  Google Scholar 

  39. Listing, J.B.: Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen (1873)

    Google Scholar 

  40. Marks, D.L.: A family of approximations spanning the Born and Rytov scattering series. Opt. Express 14, 8837–8848 (2013)

    Article  Google Scholar 

  41. Martin, G.S., Marfurt, K.J., Larsen, S.: Marmousi-2: An updated model for the investigation of AVO in structurally complex areas. In: Proceedings, SEG Annual Meeting, Salt Lake City (2002)

    Google Scholar 

  42. Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: An elastic upgrade for marmousi. Lead. Edge 25, 156–166 (2006)

    Article  Google Scholar 

  43. Marussi, A.: Intrinsic Geodesy. Springer, Berlin (1985)

    Book  Google Scholar 

  44. Meissl, P.A.: Hilbert spaces and their applications to geodetic least squares problems. Boll. Geod. Sci. Aff. 1, 181–210 (1976)

    MathSciNet  MATH  Google Scholar 

  45. Michel, V.: A multiscale method for the gravimetry problem: theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group, Shaker, Aachen (1999)

    Google Scholar 

  46. Michel, V.: Lectures on Constructive Approximation. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)

    Google Scholar 

  47. Michel, V., Fokas, A.S.: A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Prob. 24 (2008). https://doi.org/10.1088/0266-5611/24/4/045019

  48. Möhringer, S.: Decorrelation of gravimetric data. Ph.D. thesis, University of Kaiserslautern, Mathematics Department, Geomathematics Group (2014)

    Google Scholar 

  49. Moritz, H.: Advanced Physical Geodesy. Herbert Wichmann Verlag/Abacus Press, Karlsruhe/Tunbridge (1980)

    Google Scholar 

  50. Moritz, H.: The Figure of the Earth. Theoretical Geodesy of the Earth’s Interior. Wichmann Verlag, Karlsruhe (1990)

    Google Scholar 

  51. Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)

    Book  Google Scholar 

  52. Nolet, G.: Seismic Tomography: Imaging the Interior of the Earth and Sun. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  53. Popov, M.M., Semtchenok, N.M., Popov, P. M., Verdel, A.R.: Gaussian beam migration of multi-valued zero-offset data. In: Proceedings, International Conference, Days on Diffraction, St Petersburg, Russia, pp. 225–234 (2006)

    Google Scholar 

  54. Popov, M.M., Semtchenok, N.M., Popov, P.M., Verdel, A.R.L.: Reverse time migration with gaussian beams and velocity analysis applications. In: Extended Abstracts, 70th EAGE Conference & Exhibitions, Rome, F048 (2008)

    Google Scholar 

  55. Rummel, R.: Geodesy. In: Encyclopedia of Earth System Science, vol. 2, pp. 253–262. Academic, New York (1992)

    Google Scholar 

  56. Saitoh, S.: Theory of Reproducing Kernels and Its Applications. Longman, New York (1988)

    MATH  Google Scholar 

  57. Skudrzyk, E.: The Foundations of Acoustics. Springer, Heidelberg (1972)

    MATH  Google Scholar 

  58. Snieder, R.: The Perturbation Method in Elastic Wave Scattering and Inverse Scattering in Pure and Applied Science. General Theory of Elastic Waves, pp. 528–542. Academic, San Diego (2002)

    Google Scholar 

  59. Symes, W.W.: The Rice Inversion Project, Department of Computational and Applied Mathematics, Rice University, Houston, Texas, USA. http://www.trip.caam.rice.edu/downloads/downloads.html. Accessed 12 Sept 2016

  60. Torge, W.: Gravimetry. de Gruyter, Berlin (1989)

    MATH  Google Scholar 

  61. Torge, W.: Geodesy. de Gruyter, Berlin (1991)

    Book  Google Scholar 

  62. Weck, N.: Zwei inverse Probleme in der Potentialtheorie. Mitt. Inst. Theor. Geodäsie, Universität Bonn 4, 27–36 (1972)

    Google Scholar 

  63. Yilmas, O.: Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. Society of Exploration Geophysicists, Tulsa (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freeden, W., Heine, C., Nashed, M.Z. (2019). Exemplary Applications: Novel Exploration Methods. In: An Invitation to Geomathematics. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-13054-1_3

Download citation

Publish with us

Policies and ethics