Skip to main content

Formal Stability Analysis of Control Systems

  • Conference paper
  • First Online:
Formal Techniques for Safety-Critical Systems (FTSCS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1008))

  • 402 Accesses

Abstract

Stability of a control system ensures that its output is under control and thus is the most important characteristic of control systems. Stability is characterized by the roots of the characteristic equation of the given control system in the complex-domain. Traditionally, paper-and-pencil proof methods and computer-based tools are used to analyze the stability of control systems. However, paper-and-pencil proof methods are error prone due to the human involvement. Whereas, computer based tools cannot model the continuous behavior in its true form due to the involvement of computer arithmetic and the associated truncation errors. Therefore, these techniques do not provide an accurate and complete analysis, which is unfortunate given the safety-critical nature of control system applications. In this paper, we propose to overcome these limitations by using higher-order-logic theorem proving for the stability analysis of control systems. For this purpose, we present a higher-order-logic based formalization of stability and the roots of the quadratic, cubic and quartic complex polynomials. The proposed formalization is based on the complex number theory of the HOL-Light theorem prover. A distinguishing feature of this work is the automatic nature of the formal stability analysis, which makes it quite useful for the control engineers working in the industry who have very little expertise about formal methods. For illustration purposes, we present the stability analysis of power converter controllers used in smart grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, M., Hasan, O.: Formal verification of steady-state errors in unity-feedback control systems. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10702-8_1

    Chapter  Google Scholar 

  2. Ahmed, A.: System Analysis and Verification (SAVe) Lab. http://save.seecs.nust.edu.pk/projects/fsacs/. Accessed 12 Sept 2018

  3. Amin, S.M., Wollenberg, B.F.: Toward a smart grid: power delivery for the 21st century. IEEE Power Energ. Mag. 3(5), 34–41 (2005)

    Article  Google Scholar 

  4. Dyke, P.: An Introduction to Laplace Transforms and Fourier Series. SUMS. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6395-4

    Book  MATH  Google Scholar 

  5. Ekanayake, J., Jenkins, N.: Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency. IEEE Trans. Energy Convers. 19(4), 800–802 (2004)

    Article  Google Scholar 

  6. Giordano, V., et al.: Smart grid projects in Europe. JRC Ref Rep Sy 8. Publications Office of the European Union, Luxembourg (2011). https://doi.org/10.2790/32946

  7. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_4

    Chapter  Google Scholar 

  8. Harrison, J.: Theorem Proving with the Real Numbers. Springer, London (2012)

    MATH  Google Scholar 

  9. Hasan, O., Ahmad, M.: Formal analysis of steady state errors in feedback control systems using HOL-Light. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1423–1426. EDA Consortium, San Jose (2013)

    Google Scholar 

  10. Heck, A., Heck, A.: Introduction to MAPLE. Springer, New York (1993). https://doi.org/10.1007/978-1-4684-0519-4

    Book  MATH  Google Scholar 

  11. Hornik, T., Zhong, Q.C.: A current-control strategy for voltage-source inverters in microgrids based on H\(^\infty \) and repetitive control. IEEE Trans. Power Electron. 26(3), 943–952 (2011)

    Article  Google Scholar 

  12. MathWorks: Control System Toolbox. https://ch.mathworks.com/products/control.html. Accessed 12 Sept 2018

  13. MathWorks: Simulink. https://www.mathworks.com/products/simulink.html. Accessed 12 Sept 2018

  14. Momoh, J.A.: Smart Grid: Fundamentals of Design and Analysis, vol. 63. Wiley, Hoboken (2012)

    Book  Google Scholar 

  15. Nise, N.S.: Control Systems Engineering. Wiley, Hoboken (2007)

    MATH  Google Scholar 

  16. Rashid, A., Hasan, O.: Formal analysis of linear control systems using theorem proving. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 345–361. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5_21

    Chapter  Google Scholar 

  17. Rashid, A., Siddique, U., Hasan, O.: Formal verification of platoon control strategies. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp. 223–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5_14

    Chapter  Google Scholar 

  18. Sanwal, M.U., Hasan, O.: Formally analyzing continuous aspects of cyber-physical systems modeled by homogeneous linear differential equations. In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 132–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25141-7_10

    Chapter  Google Scholar 

  19. Siddique, U., Aravantinos, V., Tahar, S.: Formal stability analysis of optical resonators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 368–382. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_25

    Chapter  MATH  Google Scholar 

  20. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, vol. 2. Wiley, New York (2007)

    MATH  Google Scholar 

  21. Sourceforge: Maxima. http://maxima.sourceforge.net/. Accessed 12 Sept 2018

  22. Spong, M.W., Hutchinson, S., Vidyasagar, M., et al.: Robot Modeling and Control, vol. 3. Wiley, New York (2006)

    Google Scholar 

  23. Stoorvogel, A.A.: The H\(^\infty \) Control Problem: A State Space Approach. Citeseer (1992)

    Google Scholar 

  24. Taqdees, S.H., Hasan, O.: Formalization of Laplace transform using the multivariable calculus theory of HOL-light. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_50

    Chapter  Google Scholar 

  25. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom. Control 38(2), 195–207 (1993)

    Article  MathSciNet  Google Scholar 

  26. Wellin, P.R., Gaylord, R.J., Kamin, S.N.: An Introduction to Programming with Mathematica®. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  27. Zhong, Q.C., Hornik, T.: Control of Power Inverters in Renewable Energy and Smart Grid Integration, vol. 97. Wiley, Hoboken (2012)

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by ICT Fund UAE, fund number 21N206 at UAE University, Al Ain, United Arab Emirates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, A., Hasan, O., Awwad, F. (2019). Formal Stability Analysis of Control Systems. In: Artho, C., Ölveczky, P. (eds) Formal Techniques for Safety-Critical Systems. FTSCS 2018. Communications in Computer and Information Science, vol 1008. Springer, Cham. https://doi.org/10.1007/978-3-030-12988-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12988-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12987-3

  • Online ISBN: 978-3-030-12988-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics