Skip to main content

Uncertainty Analysis of Rainfall Spatial Interpolation in Urban Small Area

  • Conference paper
  • First Online:

Abstract

Uncertainty analysis have attracted increasing attention of both theory and application over the last decades. Owing to the complex of surrounding, uncertainty analysis of rainfall in urban area is very little. Existing literatures on uncertainty analysis paid less attention on gauge density and rainfall intensity. Therefore, this study focuses on urban area, which a good complement to uncertainty research. In this study, gauge density was investigated with carefully selecting of gauge to covering evenly. Rainfall intensity data were extracted from one rainfall event at begin, summit and ending phases of rainfall process. Three traditional methods (Ordinary Kriging, RBF and IDW) and three machine methods (RF, ANN and SVM) were investigated for the uncertainty analysis. The result shows that (1) gauge density has important influence on the interpolation accuracy, and the higher gauge density means the higher accuracy. (2) The uncertainty is progressively stable with the increasing of rainfall intensity. (3) Geostatistic methods has better result than the IDW and RBF owing to considering spatial variability. The selected machine learning methods have good performance than traditional methods. However, the complex training processing and without spatial variability may reduce its practicability in modern flood management. Therefore, the combining of traditional methods and machine learning will be the good paradigm for spatial interpolation and uncertainty analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bárdossy, A., Pegram, G.: Interpolation of precipitation under topographic influence at different time scales. Water Resour. Res. 49(8), 4545–4565 (2013)

    Article  Google Scholar 

  2. Goovaerts, P.: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 228(1–2), 113–129 (2000)

    Article  Google Scholar 

  3. Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R.: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model Softw. 16(4), 309–330 (2001)

    Article  Google Scholar 

  4. Li, J., Heap, A.D.: Spatial interpolation methods applied in the environmental sciences: a review. Environ. Model Softw. 53, 173–189 (2014)

    Article  Google Scholar 

  5. Muthusamy, M., Schellart, A., Tait, S., Heuvelink, G.B.M.: Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models. Hydrol. Earth Syst. Sci. 21(2), 1077–1091 (2017)

    Article  Google Scholar 

  6. Wagner, P.D., Fiener, P., Wilken, F., Kumar, S., Schneider, K.: Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol. 464–465, 388–400 (2012)

    Article  Google Scholar 

  7. Courty, L., Rico-Ramirez, M., Pedrozo-Acuña, A.: The significance of the spatial variability of rainfall on the numerical simulation of urban floods. Water 10(2), 207 (2018)

    Article  Google Scholar 

  8. Hall, J., Solomatine, D.: A framework for uncertainty analysis in flood risk management decisions. Int. J. River Basin Manag. 6(2), 85–98 (2008)

    Article  Google Scholar 

  9. Hutter, G., Schanze, J.: Learning how to deal with uncertainty of flood risk in long-term planning. Int. J. River Basin Manag. 6(2), 175–184 (2008)

    Article  Google Scholar 

  10. Hrachowitz, M., Weiler, M.: Uncertainty of precipitation estimates caused by sparse gauging networks in a small. Mountainous Watershed. J. Hydrol. Eng. 16(5), 460–471 (2011)

    Article  Google Scholar 

  11. Tsintikidis, D., Georgakakos, K.R., Sperfslage, J.A., Smith, D.E., Carpenter, T.M.: Precipitation uncertainty and raingauge network design within Folsom Lake watershed. J. Hydrol. Eng. 7(2), 175–184 (2002)

    Article  Google Scholar 

  12. Cheng, M., et al.: Performance assessment of spatial interpolation of precipitation for hydrological process simulation in the Three Gorges Basin. Water 9(11), 838 (2017)

    Article  Google Scholar 

  13. Rupa, C., Mujumdar, P.P.: Quantification of uncertainty in spatial return levels of urban precipitation extremes. J. Hydrol. Eng. 23(1), 04017053(2018)

    Article  Google Scholar 

  14. Yang, L., Tian, F., Niyogi, D.: A need to revisit hydrologic responses to urbanization by incorporating the feedback on spatial rainfall patterns. Urban Clim. 12, 128–140 (2015)

    Article  Google Scholar 

  15. Liu, M., Bárdossy, A., Zehe, E.: Interaction of valleys and circulation patterns (CPs) on spatial precipitation patterns in southern Germany. Hydrol. Earth Syst. Sci. 17(11), 4685–4699 (2013)

    Article  Google Scholar 

  16. Otieno, H., Yang, J., Liu, W., Han, D.: Influence of rain gauge density on interpolation method selection. J. Hydrol. Eng. 19(11), 04014024(2014)

    Article  Google Scholar 

  17. Jing, C., Yu, J., Dai, P., Wei, H., Du, M.: Rule-based rain gauge network design in urban areas aided by spatial kernel density. Water Pract. Technol. 11(1), 166–175 (2016)

    Article  Google Scholar 

  18. Moulin, L., Gaume, E., Obled, C.: Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrol. Earth Syst. Sci. 13(2), 99–114 (2009)

    Article  Google Scholar 

  19. Kobold, M., Sušelj, K.: Precipitation forecasts and their uncertainty as input into hydrological models. Hydrol. Earth Syst. Sci. 9(4), 322–332 (2005)

    Article  Google Scholar 

  20. Ly, S., Charles, C., Degré, A.: Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review. Base 17(2), 392–406 (2013)

    Google Scholar 

  21. Li, J., Heap, A.D.: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol. Inform. 6(3–4), 228–241 (2011)

    Article  Google Scholar 

  22. de Amorim Borges, P., Franke, J., da Anunciação, Y.M.T., Weiss, H., Bernhofer, C.: Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor. Appl. Climatol. 123(1–2), 335–348 (2016)

    Article  Google Scholar 

  23. Appelhans, T., Mwangomo, E., Hardy, D.R., Hemp, A., Nauss, T.: Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat. Stat. 14, 91–113 (2015)

    Article  MathSciNet  Google Scholar 

  24. Gilardi, S., Begio, N.: Local machine learning models for spatial data analysis. J. Geogr. Inf. Decis. Anal. 4(EPFL-ARTICLE-82651), 11–28 (2000)

    Google Scholar 

  25. Li, J., Heap, A.D., Potter, A., Daniell, J.J.: Application of machine learning methods to spatial interpolation of environmental variables. Environ. Model Softw. 26(12), 1647–1659 (2011)

    Article  Google Scholar 

  26. Hengl, T., Heuvelink, G.B.M., Rossiter, D.G.: About regression-Kriging: from equations to case studies. Comput. Geosci. 33(10), 1301–1315 (2007)

    Article  Google Scholar 

  27. Bhargava, N., Bhargava, R., Tanwar, P.S., Narooka, P.C.: Comparative study of inverse power of IDW interpolation method in inherent error analysis of aspect variable. In: Mishra, D., Nayak, M., Joshi, A. (eds.) Information and Communication Technology for Sustainable Development, pp. 521–529. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-3920-1_52

    Chapter  Google Scholar 

  28. Maciej, T.: Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW) - cross-validation/Jackknife approach. J. Geogr. Inf. Decis. Anal. 2(2), 18–30 (1998)

    Google Scholar 

  29. Adhikary, S.K., Muttil, N., Yilmaz, A.G.: Genetic programming-based Ordinary Kriging for spatial interpolation of rainfall. J. Hydrol. Eng. 21(2), 1–14 (2016)

    Article  Google Scholar 

  30. Berndt, C., Rabiei, E., Haberlandt, U.: Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. J. Hydrol. 508, 88–101 (2014)

    Article  Google Scholar 

  31. ESRI: How radial basis functions work (2013)

    Google Scholar 

  32. Xie, Y., et al.: Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere 82(3), 468–476 (2011)

    Article  Google Scholar 

  33. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  34. Genuer, R., Poggi, J.M., Tuleau-Malot, C., Villa-Vialaneix, N.: Random forests for big data. Big Data Res. 9, 28–46 (2017)

    Article  Google Scholar 

  35. Kühnlein, M., Appelhans, T., Thies, B., Nauss, T.: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning - a random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 141, 129–143 (2014)

    Article  Google Scholar 

  36. Basheer, I.A., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)

    Article  Google Scholar 

  37. Prasad, R., Deo, R.C., Li, Y., Maraseni, T.: Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm. Atmos. Res. 197, 42–63 (2017)

    Article  Google Scholar 

  38. Cortes, C., Cortes, C., Vapnik, V., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  39. Kavzoglu, T., Colkesen, I.: A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 11(5), 352–359 (2009)

    Article  Google Scholar 

  40. Sadler, J.M., Goodall, J.L., Morsy, M.M.: Effect of rain gauge proximity on rainfall estimation for problematic urban coastal watersheds in Virginia Beach, Virginia. J. Hydrol. Eng. 22(9), 04017036(2017)

    Article  Google Scholar 

  41. Cox, J.C., Sadiraj, V.: On the coefficient of variation as a measure of risk sensitivity. SSRN 3(3), (2011)

    Google Scholar 

  42. Reed, G.F., Lynn, F., Meade, B.D.: Quantitative assays. Clin. Diagn. Lab. Immunol. 9(6), 1235–1239 (2002)

    Google Scholar 

  43. Cristiano, E., Veldhuis, M.-C., Van De Giesen, N.: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas-a review. Hydrol. Earth Syst. Sci. 21, 3859–3878 (2017)

    Article  Google Scholar 

  44. WMO: Guide to Meteorological Instruments and Methods of observation (WMO-No.8), Seven edit. Geneva, Switzerland (2008)

    Google Scholar 

  45. Goovaerts, P.: Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89(1–2), 1–45 (1999)

    Article  Google Scholar 

  46. Ma, L., Chi, X., Zuo, C.: Evaluation of interpolation models for rainfall erosivity on a large scale. In: First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1–5. IEEE, Shanghai (2012)

    Google Scholar 

  47. Zhang, P., Liu, R., Bao, Y., Wang, J., Yu, W., Shen, Z.: Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res. 53, 132–144 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the valuable comments from anonymous reviewers. This study is jointly supported by the National Natural Science Foundation of China (Grant No. 41771412), the Beijing Natural Science Foundation (Grant No. 8182015), Beijing Advanced innovation center for future urban design (Grant No. X18052, X18058, X18158) and the Zhejiang Province Research Program (Grant No. 2015C33064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Jing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Jing, C., Fu, J., Huang, Z. (2019). Uncertainty Analysis of Rainfall Spatial Interpolation in Urban Small Area. In: Gao, H., Yin, Y., Yang, X., Miao, H. (eds) Testbeds and Research Infrastructures for the Development of Networks and Communities. TridentCom 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-12971-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12971-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12970-5

  • Online ISBN: 978-3-030-12971-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics