Skip to main content

Optimizing the Train-Catenary Electrical Interface Through Control Reconfiguration

  • Conference paper
  • First Online:
Green Energy and Networking (GreeNets 2018)

Abstract

Electric railway vehicles are supplied by substations and catenaries at increasingly high power levels being the interface between the traction motors and the overhead contact line based on power electronics converters. A large part of these are AC-DC four quadrant converters operating in parallel at relatively small switching frequencies but using the interleaving principle to reach a low harmonic distortion of the catenary current and imposing specific harmonic ranges in this current. However, the current is not a pure sinusoidal wave and its harmonics can excite unwanted resonances due to the combined effect of the catenary distributed parameters, the substation equivalent impedance and the current spectrum that can vary according to normal and abnormal operating conditions. This paper analyses this phenomenon and proposes a control strategy capable of minimizing the resonance effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenna, M., Foiadelli, F., Zaninelli, D.: Electrical Railway Transportation Systems, 1st edn. IEEE Press - Wiley, Hoboken (2018)

    Google Scholar 

  2. Holtz, J., Klein, H.-J.: The propagation of harmonic currents generated by inverter-fed locomotives in the distributed overhead supply system. IEEE Trans. Power Electron. 4(2), 168–174 (1989)

    Article  Google Scholar 

  3. Chang, G.W., Lin, H.-W., Chen, S.-K.: Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters. IEEE Trans. Power Deliv. 19(2), 766–773 (2004)

    Article  Google Scholar 

  4. Zynovchenko, A., Xie, J., Jank, S., Klier, F.: Resonance phenomena and propagation of frequency converter harmonics in the catenary of railways with single-phase AC. In: Proceedings of the EPE 2005, 11–14 September, Dresden (2005)

    Google Scholar 

  5. Wang, B., Han, X., Gao, S., Huang, W., Jiang, X.: Harmonic power flow calculation for high-speed railway traction power supply system. In: Jia, L., Liu, Z., Qin, Y., Zhao, M., Diao, L. (eds.) EITRT 2013. LNEE, vol. 287, pp. 11–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53778-3_2

    Chapter  Google Scholar 

  6. Hu, H., He, Z., Gao, S.: Passive filter design for China high-speed railway with considering harmonic resonance and characteristic harmonics. IEEE Trans. Power Deliv. 30(1), 505–514 (2015)

    Article  Google Scholar 

  7. Janssen, M.F.P., Gonçalves, P.G., Santo, R.P., Smulders, H.W.M.: Simulations and measurements on electrical resonances on the Portuguese 25 kV network. In: Proceedings of the 8th World Congress on Railway Research, WCRR 2008, 18–22 May, Seoul, Korea (2008)

    Google Scholar 

  8. Suarez, J.: Étude et modélisation des intéractions éléctriques entre les engins et les installations fixes de traction éléctrique 25 kV–50 Hz. Ph.D. thesis, GEET-INP, Toulouse, France (2014)

    Google Scholar 

  9. Hu, H., Tao, H., Blaabjerg, F., Wang, X., He, Z., Gao, S.: Train-network interactions and stability evaluation in high-speed railways - part I: phenomena and modeling. IEEE Trans. Power Electron. 33(6), 4627–4642 (2018)

    Article  Google Scholar 

  10. Lee, H., Lee, C., Jang, G., Kwon, S.-H.: Harmonic analysis of the Korean high-speed railway using the eight-port representation model. IEEE Trans. Power Deliv. 21(2), 979–986 (2006)

    Article  Google Scholar 

  11. Brenna, M., Capasso, A., Falvo, M.C., Foiadelli, F., Lamedica, R., Zaninelli, D.: Investigation of resonance phenomena in high speed railway supply systems: theoretical and experimental analysis. Electric Power Syst. Res. 81, 1915–1923 (2011)

    Article  Google Scholar 

  12. Holtz, J., Krah, J.O.: On-line identification of the resonance conditions in the overhead supply line of electric railways. Electr. Eng. 74(1), 99–106 (1990)

    Google Scholar 

  13. Mariscotti, A., Pozzobon, P.: Synthesis of line impedance expressions for railway traction systems. IEEE Trans. Veh. Technol. 52(2), 420–430 (2003)

    Article  Google Scholar 

  14. Dolara, A., Gualdoni, M., Leva, S.: Impact of high-voltage primary supply lines in the 2 \(\times \) 25 kV–50 Hz railway system on the equivalent impedance at pantograph terminals. IEEE Trans. Power Deliv. 27(1), 164–175 (2012)

    Google Scholar 

  15. Monjo, L., Sainz, L.: Study of resonances in 1 \(\times \) 25 kV AC traction systems. Electr. Power Compon. Syst. 43(15), 1771–1780 (2015)

    Google Scholar 

  16. Robert, A., Deflandre, T.: Guide for assessing the network harmonic impedance. In: Proceedings of the 14th International Conference and Exhibition on Electricity and Distribution, CIRED 1997, 2–5 June (IEEE Conference Publication No. 438) (1997)

    Google Scholar 

  17. Girgis, A., McManis, R.B.: Frequency domain techniques for modelling distribution or transmission networks using capacitor switching induced transients. IEEE Trans. Power Deliv. 4(3), 1882–1890 (1989)

    Article  Google Scholar 

  18. Hoffmann, N., Fuchs, F.W.: Minimal invasive equivalent grid impedance estimation in inductive-resistive power networks using extended Kalman filter. IEEE Trans. Power Electron. 29(2), 164–175 (2014)

    Article  Google Scholar 

  19. Duda, K., Borkowski, D., Bień, A.: Computation of the network harmonic impedance with chirp z-transform. Metrol. Measur. Syst. 16(2), 299–312 (2009)

    Google Scholar 

  20. Xu, W., Huang, Z., Cui, Y., Wang, H.: Harmonic resonance mode analysis. IEEE Trans. Power Deliv. 20(2), 1182–1190 (2005)

    Article  Google Scholar 

  21. Perreault, D.J., Kassakian, J.G.: Distributed interleaving of paralleled power converters. IEEE Trans. Circ. Syst.-I: Fundam. Theor. Appl. 44(8), 728–735 (1997)

    Article  MATH  Google Scholar 

  22. Tan, P.-C., Loh, P.C., Holmes, D.G.: Optimal impedance termination of 25-kV electrified railway systems for improved power quality. IEEE Trans. Power Deliv. 20(2), 1703–1710 (2005)

    Article  Google Scholar 

  23. Zhang, R., Lin, F., Yang, Z., Cao, H., Liu, Y.: A harmonic resonance suppression strategy for a high-speed railway traction power supply system with a SHE-PWM four-quadrant converter based on active-set secondary optimization. Energies 10, 1567–1589 (2017)

    Article  Google Scholar 

  24. Holtz, J., Krah, J.O.: Suppression of time-varying resonances in the power supply line of AC locomotives by inverter control. IEEE Trans. Ind. Electron. 39(3), 223–229 (1992)

    Article  Google Scholar 

  25. Qiujiang, L., Mingli, W., Junki, Z., Kejian, S., Liran, W.: Resonant frequency identification based on harmonic injection measuring method for traction power supply systems. IET Power Electron. 11(3), 585–592 (2018)

    Article  Google Scholar 

  26. Sun, J.: Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 26(11), 3075–3078 (2011)

    Article  Google Scholar 

  27. Cespedes, M., Sun, J.: Adaptive control of grid-connected inverters based on online grid impedance measurements. IEEE Trans. Sustain. Energy 5(2), 516–523 (2014)

    Article  Google Scholar 

  28. Youssef, A.B., El Khil, S.K., Slama-Belkhodja, I.: State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction. IEEE Trans. Power Electron. 28(12), 5842–5853 (2013)

    Article  Google Scholar 

  29. Bahrani, B., Rufer, A.: Optimization-based voltage support in traction networks using active line-side converters. IEEE Trans. Power Electron. 28(2), 673–685 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The research has received funding from the FCT (Fundação para a Ciência e Tecnologia) under grant PD/BD/128051/2016. This work was partially supported by: FCT R&D Unit SYSTEC - POCI-01-0145-FEDER-006933/SYSTEC funded by FEDER funds through COMPETE 2020 and by national funds through the FCT/MEC, and co-funded by FEDER, in the scope of the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martins, A., Morais, V., Ramos, C., Carvalho, A., Afonso, J.L. (2019). Optimizing the Train-Catenary Electrical Interface Through Control Reconfiguration. In: Afonso, J., Monteiro, V., Pinto, J. (eds) Green Energy and Networking. GreeNets 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-030-12950-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12950-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12949-1

  • Online ISBN: 978-3-030-12950-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics