Skip to main content

Reliability Analysis of Dynamical Systems

  • Chapter
  • First Online:
Sub-structure Coupling for Dynamic Analysis

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 89))

Abstract

The use of reduced-order models in the context of reliability analysis of dynamical systems under stochastic excitation is explored in this chapter. A stochastic excitation model based on a point-source model is introduced, and it is used for the generation of ground motions. The corresponding reliability analysis represents a high-dimensional reliability problem whose solution is carried out by an advanced simulation technique. Two application problems are considered in order to evaluate the effectiveness of the proposed model reduction technique. The first example consists of a two-dimensional frame structure, while the second example considers an involved nonlinear finite element building model. The results show that an important reduction in computational effort can be achieved without compromising the accuracy of the reliability estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Anderson, S.E. Hough, A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull. Seism. Soc. Am. 74(5), 1969–1993 (1984)

    Google Scholar 

  2. P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. J. Chem. Phys. 137, 1441103-1–144103-19 (2012)

    Google Scholar 

  3. P. Angelikopoulus, C. Papadimitriou, P. Koumoutsakos, X-TMCMC: adaptive kriging for Bayesian inverse modeling. Comput. Methods Appl. Mech. Eng. 289, 409–428 (2015)

    Google Scholar 

  4. G.M. Atkinson, W. Silva, Stochastic modeling of California ground motions. Bull. Seism. Soc. Am. 90(2), 255–274 (2000)

    Google Scholar 

  5. S.-K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Eng. Mech. 16(4), 263–277 (2001)

    Google Scholar 

  6. S.-K. Au, Y. Wang, Engineering Risk Assessment with Subset Simulation (Wiley, New York, 2014)

    Google Scholar 

  7. S.-K. Au, E. Patelli, Rare event simulation in finite-infinite dimensional space. Reliab. Eng. Syst. Saf. 148, 67–77 (2016)

    Google Scholar 

  8. B.M. Ayyub, M.M. Gupta, L.N. Kanal, Analysis and Management of Uncertainty: Theory and Applications (Elsevier Scientific Publisher, North-Holland, 1992)

    MATH  Google Scholar 

  9. T.T. Baber, Y. Wen, Random vibration hysteretic, degrading systems. J. Eng. Mech. Div. 107(6), 1069–1087 (1981)

    Google Scholar 

  10. T.T. Baber, M.N. Noori, Modeling general hysteresis behavior and random vibration applications. J. Vib. Acoust. Stress. Reliab. Des. (ASCE) 108, 411–420 (1986)

    Google Scholar 

  11. C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)

    MathSciNet  MATH  Google Scholar 

  12. M. Beer, M. Liebscher, Designing robust structures - a nonlinear simulation based approach. Comput. Struct. 86, 1102–1122 (2008)

    Google Scholar 

  13. S. Bitzarakis, M. Papadrakakis, A. Kotsopulos, Parallel solutions techniques in computational structural mechanics. Comput. Methods Appl. Mech. Eng. 148, 75–104 (1997)

    MathSciNet  MATH  Google Scholar 

  14. D.M. Boore, Simulation of ground motion using the stochastic method. Pure Appl. Geophys. 160(3–4), 635–676 (2003)

    Google Scholar 

  15. D.M. Boore, W.B. Joyner, T.E. Fumal, Equations for estimating horizontal response spectra and peak acceleration from western north american earthquakes: a summary of recent work. Seism. Res. Lett. 68(1), 128–153 (1997)

    Google Scholar 

  16. J.D. Bray, A. Rodrigues-Marek, Characterization of forward-directivity ground motions in the near-fault region. Soil Dyn. Earthq. Eng. 24, 815–828 (2004)

    Google Scholar 

  17. F. Cérou, P. Del Moral, T. Furon, A. Guyader, Sequential Monte Carlo for rare event estimation. Stat. Comput. 22(3), 795–808 (2012)

    MathSciNet  MATH  Google Scholar 

  18. J. Ching, S.-K. Au, J.L. Beck, Reliability estimation of dynamical systems subject to stochastic excitation using subset simulation with splitting. Comput. Methods Appl. Mech. Eng. 194(12–16), 1557–1579 (2005)

    MathSciNet  MATH  Google Scholar 

  19. J. Ching, J.L. Beck, S.K. Au, Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation. Probabilistic Eng. Mech. 20(3), 199–214 (2005)

    Google Scholar 

  20. J.P. Conte, B.F. Peng, Full nonstationary analytical earthquake ground-motion model. J. Enginering Mech. 12, 15–34 (1997)

    Google Scholar 

  21. P. Del Moral, A. Doucet, A. Jasra, Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B (Statistical Methodology) 68(3), 411–436 (2006)

    Google Scholar 

  22. G. Deodatis, Non-stationary stochastic vector processes: seismic ground motion applications. Probabilistic Eng. Mech. 11, 149–167 (1996)

    Google Scholar 

  23. A. Der Kiureghian, Enginering Design Reliability Handbook (CRC Press, New York, 2004)

    Google Scholar 

  24. O. Ditlevsen, O.H. Madsen, Structural Reliability Methods (Wiley, New York, 1996)

    Google Scholar 

  25. B. Ellingwood, T.V. Galambos, Probability-based criteria for structural design. Struct. Saf. 1(1), 15–26 (1982)

    Google Scholar 

  26. M. Ester, H.P. Kriegel, J. Sanders, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise (AAAI Press, Cambridge, 1996), pp. 226–231

    Google Scholar 

  27. W. Fellin, H. Lessmann, M. Oberguggenberger, R. Vieider (eds.), in Analyzing Uncertainty in Civil Engineering (Springer, Berlin, 2005)

    Google Scholar 

  28. G.S. Fishman, Monte Carlo: Concepts, Algorithms and Applications (Springer, New York, 1996)

    MATH  Google Scholar 

  29. D.M. Frangopol, K. Maute, Life-cycle reliability-based optimization of civil and aerospace structures. Comput. Struct. 81(7), 397–410 (2003)

    Google Scholar 

  30. R. Ghanem, The nonlinear Gaussian spectrum of lognormal stochastic processes and variables. ASME J. Appl. Mech. 66(4), 964–973 (1999)

    Google Scholar 

  31. D.G. Giovanis, I. Papaioannou, D. Straub, V. Papadopoulos, Bayesian updating with subset simulation using artificial neural netwoks. Comput. Methods Appl. Mech. Eng. 319, 124–145 (2017)

    MATH  Google Scholar 

  32. D.V. Griffiths, J. Paiboon, J. Huang, G.A. Fenton, Reliability analysis of beams on random elastic foundations. Gotechnique 63(2), 180–188 (2013)

    Google Scholar 

  33. J.E. Hurtado, A.H. Barbat, Monte Carlo techniques in computational stochastic mechanics. Arch. Comput. Methods Eng. 5(1), 3–29 (1998)

    Google Scholar 

  34. H.A. Jensen, M.A. Catalan, On the effects of non-linear elements in the reliability-based optimal design of stochastic dynamical systems. Int. J. Non Linear Mech. 42(5), 802–816 (2007)

    MATH  Google Scholar 

  35. H.A. Jensen, J.G. Sepulveda, On the reliability-based design of structures including passive energy dissipation systems. Struct. Saf. 34, 390–400 (2011)

    Google Scholar 

  36. H.A. Jensen, J. Sepulveda, L. Becerra, Robust stochastic design of base-isolated structural systems. Int. J. Uncertain. Quantif. 2(2), 95–110 (2012)

    MathSciNet  Google Scholar 

  37. H.A. Jensen, F. Mayorga, M.A. Valdebenito, Reliability sensitivity estimation of nonlinear structural systems under stochastic excitation: a simulation-based approach. Comput. Methods Appl. Mech. Eng. 289, 1–23 (2015)

    MathSciNet  MATH  Google Scholar 

  38. H.A. Jensen, D.S. Kusanovic, M.A. Valdebenito, G.I. Schuëller, Reliability-based design optimization of uncertain stochastic systems: a gradient-based scheme. J. Eng. Mech. 138(1), 60–70 (2012)

    Google Scholar 

  39. L.S. Katafygiotis, T. Moand, S.H. Cheung, Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures. Struct. Eng. Mech. 25(3), 347–363 (2007)

    Google Scholar 

  40. P.S. Koutsourelakis, H.J. Pradlwarter, G.I. Schuëller, Reliability of structures in high dimensions, part I: Algorithms and applications. Probabilistic Eng. Mech. 19(4), 409–417 (2004)

    Google Scholar 

  41. S.L. Kramer, Geotechnical Earthquake Engineering (Prentice Hall, Englewood Cliffs, 2003)

    Google Scholar 

  42. N. Kuschel, R. Rackwitz, Two basic problems in reliability-based structural optimization. Math. Methods Oper. Res. 46(3), 309–333 (1997)

    MathSciNet  MATH  Google Scholar 

  43. P.C. Mahalanobis, On the generalised distance in statistics, in Proceedings of the National Institute of Sciences of India (1936), pp. 49–55

    Google Scholar 

  44. G.P. Mavroeidis, A.S. Papageorgiou, A mathematical representation of near-field ground motions. Bull. Seism. Soc. Am. 93(3), 1099–1131 (2003)

    Google Scholar 

  45. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    MATH  Google Scholar 

  46. H. Miyake, T. Iwata, K. Irikura, Source characterization for broadband ground-motion simulation: kinematic heterogeneous model and strong motion generation area. Bull. Seism. Soc. Am. 93, 2531–2545 (2003)

    Google Scholar 

  47. D. Moens, D. Vandepitte, A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Methods Appl. Mech. Eng. 194, 1527–1555 (2005)

    MATH  Google Scholar 

  48. B. Möller, M. Beer, Engineering computation under uncertainty - capabilities of non-traditional models. Comput. Struct. 86, 1024–1041 (2008)

    Google Scholar 

  49. O. Möller, R.O. Foschi, L.M. Quiroz, M. Rubinstein, Structural optimization for performance-based design in earthquake engineering: applications of neural networks. Struct. Saf. 31(6), 490–499 (2009)

    Google Scholar 

  50. R.M. Neal, Annealed importance sampling. Stat. Comput. 11(2), 125–139 (2001)

    MathSciNet  Google Scholar 

  51. A. Nozu, A super asperity model for the 2011 off Pacific coast of Tohoku earthquake. J. Jpn. Assoc. Earthq. Eng. 14(6), 36–55 (2014)

    Google Scholar 

  52. A. Nozu, M. Yamada, T. Nagao, K. Irikura, Generation of strong motion pulses during huge subduction earthquakes and scaling of their generation areas. J. Jpn. Assoc. Earthq. Eng. 14(6), 96–117 (2014)

    Google Scholar 

  53. C. Papadimitriou, Stochastic Characterization of Strong Ground Motions and Application to Structure Response. Rep. No. EERL 90-03 (California Institute of Technology, Pasadena, California, USA, 1990)

    Google Scholar 

  54. Y.J. Park, Y.K. Wen, A.H. Ang, Random vibration of hysteretic systems under bi-directional ground motions. Earthq. Eng. Struct. Dyn. 14(4), 543–557 (1986)

    Google Scholar 

  55. M.F. Pellissetti, Parallel processing in structural reliability. J. Struct. Eng. Mech. 32(1), 95–126 (2009)

    Google Scholar 

  56. H.J. Pradlwarter, G.I. Schuëller, P.S. Koutsourelakis, D.C. Champris, Application of line sampling simulation method to reliability benchmark problems. Struct. Saf. 29(3), 208–221 (1998)

    Google Scholar 

  57. S. Rezaeian, A. Der Kiureghian, A stochastic ground motion model with separable temporal and spectral nonstationarities. Earthq. Eng. Struct. Dyn. 37, 1565–1584 (2008)

    Google Scholar 

  58. J.O. Royset, A. Der Kiureghian, E. Polak, Reliability-based optimal structural design by the decoupling approach. Reliab. Eng. Syst. Saf. 73(3), 213–221 (2001)

    Google Scholar 

  59. R.Y. Rubinstein, D.P. Kroese, Simulation and Monte Carlo Method (Wiley, New York, 2007)

    MATH  Google Scholar 

  60. F. Sabetta, A. Plugliese, Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull. Seism. Soc. Am. 86, 337–352 (1996)

    Google Scholar 

  61. G.R. Saragoni, G.C. Hart, Simulation of artificial earthquakes. Earthq. Eng. Struct. Dyn. 2(3), 249–267 (1974)

    Google Scholar 

  62. G.I. Schuëller, H.J. Pradlwarter, Benchmark study on reliability estimation in higher dimensions of structural systems - an overview. Struct. Saf. 29, 167–182 (2007)

    Google Scholar 

  63. T. Soong, M. Grigoriu, Random Vibration of Mechanical and Structural Systems (Prentice Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  64. B. Sudret, Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report (University of California, Berkeley, 2000)

    Google Scholar 

  65. A. Taflanidis, Robust stochastic design of viscous dampers for base isolation applications, in ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes, Greece, 22–24 June 2009

    Google Scholar 

  66. P.K. Umesha, M.T. Venuraju, D. Hartmann, K.R. Leimbach, Optimal design of truss structures using parallel computing. Struct. Multidiscip. Optim. 29, 285–297 (2005)

    Google Scholar 

  67. A. Zerva, Spatial Variation of Seismic Ground Motions Modeling and Engineering Applications (CRC Press, Boca Raton, 2003)

    Google Scholar 

  68. Y. Zhang, A. Der Kiureghian, First-excursion probability of uncertain structures. Probabilistic Eng. Mech. 9(1–2), 135–143 (1994)

    Google Scholar 

  69. K.M. Zuev, L.S. Katafygiotis, The Horseracing simulation algorithm for evaluation of small failure probabilities. Probabilistic Eng. Mech. 26(2), 157–164 (2011)

    Google Scholar 

  70. K.M. Zuev, J.L. Beck, S.-K. Au, L.S. Katafygiotis, Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities in high dimensions. Comput. Struct. 92, 283–296 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Jensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jensen, H., Papadimitriou, C. (2019). Reliability Analysis of Dynamical Systems. In: Sub-structure Coupling for Dynamic Analysis. Lecture Notes in Applied and Computational Mechanics, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-12819-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12819-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12818-0

  • Online ISBN: 978-3-030-12819-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics