Skip to main content

A Brute-Force Solution to the 27-Queens Puzzle Using a Distributed Computation

  • Conference paper
  • First Online:
Membrane Computing (CMC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11399))

Included in the following conference series:

  • 340 Accesses

Abstract

The N-Queens Puzzle is an intriguing mathematical riddle that provokes many interesting but hard questions albeit having an astonishingly simple problem statement. One of these questions asks for the number of non-attacking placements of N queens onto a generalized \(N\times N\) chessboard. While estimates and bounds can certainly be given, the exact solution counts, so far, have not lent themselves to a reasonable closed-form solution but rather to showcasing the arts of computer programming - and of digital design - in a tedious systematic exploration of the vast solution space. Already, Donald Knuth has made it a classic example illustrating the technique of backtracking. The largest problem sizes with known solution counts are N = 26 and N = 27. Both of them were first obtained by distributed computations relying on nodes featuring solver engines built within field-programmable hardware. This presentation will briefly introduce the capabilities and opportunities of programmable hardware highlighting its great fit for exploring the N-Queens Puzzle. It will illustrate how the computations were partitioned and how symmetries were used to prune the search spaces before even starting. Finally, the distributed architectures running the actual computations over several months each will be detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MC#. http://www.mcsharp.net/

  2. nQueens: n=25. http://www-sop.inria.fr/oasis/ProActive2/apps/nqueens25.html

  3. NQueens@Home. http://www.rechenkraft.net/wiki/NQueens@Home

  4. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens. Discrete Math. 309(1), 1–31 (2009). https://doi.org/10.1016/j.disc.2007.12.043, http://www.sciencedirect.com/science/article/pii/S0012365X07010394

    Article  MathSciNet  Google Scholar 

  5. Preußer, T.B., Engelhardt, M.R.: Putting queens in carry chains, No. 27. J. Signal Process. Syst. 1–17 (2016). https://doi.org/10.1007/s11265-016-1176-8

    Article  Google Scholar 

  6. Preußer, T.B., Gambardella, G., Fraser, N., Blott, M.: Inference of quantized neural networks on heterogeneous all-programmable devices. In: Design, Automation and Test in Europe (DATE 2018), pp. 833–838, March 2018. https://doi.org/10.23919/DATE.2018.8342121

  7. Preußer, T.B., Nägel, B., Spallek, R.G.: Putting queens in carry chains. In: 3rd HIPEAC Workshop on Reconfigurable Computing, pp. 83–92, January 2009

    Google Scholar 

  8. Sung, W., Shin, S., Hwang, K.: Resiliency of deep neural networks under quantization. In: CoRR abs/1511.0 (2015)

    Google Scholar 

  9. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network inference. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2017), FPGA, pp. 65–74. ACM, New York, February 2017. https://doi.org/10.1145/3020078.3021744

  10. Zhang, T., Shu, W., Wu, M.-Y.: Optimization of N-queens solvers on graphics processors. In: Temam, O., Yew, P.-C., Zang, B. (eds.) APPT 2011. LNCS, vol. 6965, pp. 142–156. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24151-2_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Preußer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Preußer, T. (2019). A Brute-Force Solution to the 27-Queens Puzzle Using a Distributed Computation. In: Hinze, T., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2018. Lecture Notes in Computer Science(), vol 11399. Springer, Cham. https://doi.org/10.1007/978-3-030-12797-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12797-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12796-1

  • Online ISBN: 978-3-030-12797-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics