Skip to main content

Construction of Stable and Lightweight Technical Structures Inspired by Ossification of Bones Using Osteogenetic P Systems

  • Conference paper
  • First Online:
Membrane Computing (CMC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11399))

Included in the following conference series:

Abstract

Vertebrates come with a skeleton of bones whose inner structure combines two contradicting properties in a fascinating way: On the one hand, bones are stable and robust against mechanical stress, and on the other hand they are lightweight to minimise the energy necessary for motion of the organism. By means of a biological process called ossification, the inner structure of bones becomes permanently optimised during organism’s lifetime which implies a high adaptability to varying environmental and behavioural needs. An appropriate computational model of ossification provides a promising bionics tool with widespread applicability for instance in architecture for construction of technical structures. To this end, we introduce the framework of osteogenetic P systems able to generate and to manage the spatial inner structure of bones in a dynamical manner during ossification. Starting from an initial porous network of interwoven filaments surrounded by vesicles, a variety of osteoblasts and osteoclasts is placed alongside the filaments throughout the whole network. External forces, freely configurable in their intensity and effective direction, affect the outer nodes of the network inducing a spatial distribution of mechanical stress in its inner filamentary structure. Now, the osteoblasts move towards heavily loaded positions and strengthen the corresponding filaments while osteoclasts eliminate filamentary material wherever dispensible. Over time, the inner network structure adapts to its demands by strong filaments along the main force lines. Complementing our framework of osteogenetic P systems, we demonstrate its practicability using two case studies: The first one describes generation of a dice-shaped cage resistant against weights on top. The second study addresses construction of an arched bridge with two opposite bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albanese, A., et al.: The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)

    Article  Google Scholar 

  2. van Amsterdam, E.: Construction Materials for Civil Engineering. Juta & Company (2000)

    Google Scholar 

  3. Ananthanatayanan, A., Azadi, M., Kim, S.: Towards a bio-inspired leg design for high-speed running. Bioinspiration Biomimetics 7(4), 046005 (2012)

    Article  Google Scholar 

  4. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  5. Baumgartner, A., et al.: Soft kill option: the biological way to find an optimum structure topology. Int. J. Fatigue 14(6), 387–393 (1992)

    Article  Google Scholar 

  6. Becker, M., Golay, P.: Rhino NURBS 3D Modeling. Updog Publishers (2009)

    Google Scholar 

  7. Bose, S., Vahabzadeh, S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504 (2013)

    Article  Google Scholar 

  8. Cacciagrano, D., Corradini, F., Merelli, E., Tesei, L.: Multiscale bone remodelling with spatial P systems. EPTCS 40, 70–84 (2010)

    Article  Google Scholar 

  9. Desai, Y.M., Eldho, T.I., Shah, A.H.: Finite Element Method with Applications in Engineering. Person, London (2011)

    Google Scholar 

  10. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems and Synthetic Biology. ECC, vol. 7. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03191-0

    Book  Google Scholar 

  11. Frost, H.M.: From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat. Rec. 262, 398–419 (2001)

    Article  Google Scholar 

  12. Gerhard, F., et al.: In silico biology of bone modelling and remodelling: adaptation. Philos. Trans. R. Soc. 367, 2011–2030 (2009)

    Article  Google Scholar 

  13. McGinnis, P.M.: Biomechanics of Sport and Exercise. Human Kinetics, Champaign (2005)

    Google Scholar 

  14. Hibbeler, R.C.: Engineering Mechanics: Statics. Pearson Prentice Hall, Upper Saddle River (2007)

    MATH  Google Scholar 

  15. Hinze, T., Grützmann, K., Höckner, B., Sauer, P., Hayat, S.: Categorised counting mediated by blotting membrane systems for particle-based data mining and numerical algorithms. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 241–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14370-5_15

    Chapter  MATH  Google Scholar 

  16. Hinze, T., Weber, L.L., Hatnik, U.: Walking membranes: grid-exploring P systems with artificial evolution for multi-purpose topological optimisation of cascaded processes. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 251–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54072-6_16

    Chapter  Google Scholar 

  17. Huiskes, R., et al.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706 (2000)

    Article  Google Scholar 

  18. Kanungo, T., et al.: An efficient \(k\)-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  19. Khoshnevis, B., et al.: Mega-scale fabrication by contour crafting. Int. J. Ind. Syst. Eng. 1(3), 301–320 (2006)

    Google Scholar 

  20. Kozlov, A., et al.: Bio-inspired design: aerodynamics of boxfish. Procedia Eng. 105, 323–328 (2015)

    Article  Google Scholar 

  21. Lian, Q., Wu, Z.: Membrane computing based virtual network embedding algorithm with path splitting. Appl. Mech. Mater. 687, 2997–3002 (2014)

    Article  Google Scholar 

  22. Nachtigall, W., Pohl, G.: Bau-Bionik. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-540-88995-3

    Book  Google Scholar 

  23. Nachtigall, W., Wisser, A.: Bionics by Examples: 250 Scenarios from Classical to Modern Times. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05858-0

    Book  Google Scholar 

  24. Paun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2009)

    Google Scholar 

  25. Robling, A.G., Castillo, A.B., Turner, C.H.: Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8, 455–498 (2006)

    Article  Google Scholar 

  26. Trotter, M., et al.: Densities of bones of white and negro skeletons. J. Bone Joint Surg. 42a, 50–58 (1960)

    Article  Google Scholar 

  27. Vukorep, I.: Autonomous big-scale additive manufacturing using cable-driven robots. In: Proceedings 34th International Symposium on Automation and Robotics in Construction (ISARC 2017), Taipeh, pp. 254–259 (2017)

    Google Scholar 

  28. Weinkamer, R., Fratzl, P.: Mechanical adaptation of biological materials - the examples of bone and wood. Mater. Sci. Eng. 31, 1164–1173 (2011)

    Article  Google Scholar 

  29. Wolff, J.: Das Gesetz der Transformation der Knochen. Hirschwald, Berlin (1892)

    Google Scholar 

  30. Yongxiang, L.U.: Significance and progress of bionics. Springer J. Bionic Eng. 1(1), 1–3 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melcher, A., Vukorep, I., Hinze, T. (2019). Construction of Stable and Lightweight Technical Structures Inspired by Ossification of Bones Using Osteogenetic P Systems. In: Hinze, T., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2018. Lecture Notes in Computer Science(), vol 11399. Springer, Cham. https://doi.org/10.1007/978-3-030-12797-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12797-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12796-1

  • Online ISBN: 978-3-030-12797-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics