Skip to main content

Hypoxia and the Tumor Secretome

  • Chapter
  • First Online:
Hypoxia and Cancer Metastasis

Abstract

Metastasis remains the leading cause of cancer-related deaths. To date, there are no specific treatments targeting disseminated disease. New therapeutic options will become available only if we enhance our understanding of mechanisms underlying metastatic spread. A large body of literature shows that the metastatic potential of tumor cells is strongly influenced by microenvironmental cues such as low oxygen (hypoxia). Clinically, hypoxia is a hallmark of most solid tumors and is associated with increased metastasis and poor survival in a variety of cancer types. Mechanistically, hypoxia influences multiple steps within the metastatic cascade and particularly impacts the interactions between tumor cells and host stroma at both primary and secondary sites. Here we review current evidence for a hypoxia-induced tumor secretome and its impact on metastatic progression. These studies have identified potential biomarkers and therapeutic targets that could be integrated into strategies for preventing and treating metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chenau J, Michelland S, Seve M (2008) Le sécrétome: définitions et intérêt biomédical. La Revue de Médecine Interne 29:606–608

    Article  CAS  PubMed  Google Scholar 

  3. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:867–867

    Article  CAS  PubMed  Google Scholar 

  4. Ferro-Novick S, Brose N (2013) Traffic control system within cells. Nature 504:98–98

    Article  CAS  PubMed  Google Scholar 

  5. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372

    Article  CAS  PubMed  Google Scholar 

  6. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948

    Article  CAS  PubMed  Google Scholar 

  7. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    Article  CAS  PubMed  Google Scholar 

  8. Dong H et al (2016) Breast Cancer MDA-MB-231 cells use secreted heat shock protein-90alpha (Hsp90α) to survive a hostile hypoxic environment. Sci Rep 6:20605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ehrenfried JA, Herron BE, Townsend CM, Evers BM (1995) Heat shock proteins are differentially expressed in human gastrointestinal cancers. Surg Oncol 4:197–203

    Article  CAS  PubMed  Google Scholar 

  10. Li CF et al (2008) Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the and isoforms in gastrointestinal stromal tumors. Clin Cancer Res 14:7822–7831

    Article  CAS  PubMed  Google Scholar 

  11. Gress TM et al (1994) Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 54:547–551

    CAS  PubMed  Google Scholar 

  12. Bao S et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5:329–339

    Article  CAS  PubMed  Google Scholar 

  13. Song G et al (2009) Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1alpha up-regulation and MMP9 activation. J Cell Mol Med 13:1706–1718

    Article  PubMed  Google Scholar 

  14. Song G et al (2008) Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Sci 99:1901–1907

    CAS  PubMed  Google Scholar 

  15. Xue M et al (2017) Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer 16:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Panigrahi GK et al (2018) Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep 8:290

    Article  CAS  Google Scholar 

  17. Adair TH, Montani J-P (2010) Angiogenesis. In: Colloquium series on integrated systems physiology: from molecule to function, vol. 2, pp 1–84

    Google Scholar 

  18. Krock BL, Skuli N, Simon MC (2012) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2:1117–1133

    Article  CAS  Google Scholar 

  19. Li B et al (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497

    Article  CAS  PubMed  Google Scholar 

  20. Compernolle V et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8:702–710

    Article  CAS  PubMed  Google Scholar 

  21. Rankin EB et al (2008) Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene 27:5354–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77:638–643

    Article  CAS  PubMed  Google Scholar 

  23. Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270:13333–13340

    Article  CAS  PubMed  Google Scholar 

  24. Ceradini DJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  25. Reynolds LP, Redmer DA (1998) Expression of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in the ovary. J Anim Sci 76:1671

    Article  CAS  PubMed  Google Scholar 

  26. Hong KH (2005) Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 105:1405–1407

    Article  CAS  PubMed  Google Scholar 

  27. Matsui J, Wakabayashi T, Asada M, Yoshimatsu K, Okada M (2004) Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J Biol Chem 279:18600–18607

    Article  CAS  PubMed  Google Scholar 

  28. Han ZB et al (2008) Hypoxia-inducible factor (HIF)-1 directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis 29:1853–1861

    Article  CAS  PubMed  Google Scholar 

  29. Sun L et al (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9:287–300

    Article  CAS  PubMed  Google Scholar 

  30. Litz J (2006) Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1 activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol Cancer Ther 5:1415–1422

    Article  CAS  PubMed  Google Scholar 

  31. Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    Google Scholar 

  32. Iivanainen E, Nelimarkka L, Elenius V et al (2003) Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J 17:1609–1621

    Article  CAS  PubMed  Google Scholar 

  33. Murakami M (2012) Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int J Vasc Med 2012:293641

    Google Scholar 

  34. Laderoute KR et al (2000) Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res 6:2941–2950

    CAS  PubMed  Google Scholar 

  35. Umezu T et al (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124:3748–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsu Y-L et al (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36:4929–4942

    Article  CAS  PubMed  Google Scholar 

  37. Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH (2013) Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 288:34343–34351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mao G et al (2015) Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis 18:373–382

    Article  CAS  PubMed  Google Scholar 

  39. Wang R et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  CAS  PubMed  Google Scholar 

  40. Ricci-Vitiani L et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  CAS  PubMed  Google Scholar 

  41. Soda Y et al (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108:4274–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen H-F et al (2014) Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat Commun 5:4697

    Article  CAS  PubMed  Google Scholar 

  43. Du R et al (2008) HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin S et al (2012) Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia. Cancer Sci 103:904–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leek RD et al (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190:430–436

    Article  CAS  PubMed  Google Scholar 

  46. Grimshaw MJ, Wilson JL, Balkwill FR (2002) Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur J Immunol 32:2393–2400

    Article  CAS  PubMed  Google Scholar 

  47. Grimshaw MJ (2007) Endothelins and hypoxia-inducible factor in cancer. Endocr Relat Cancer 14:233–244

    Article  CAS  PubMed  Google Scholar 

  48. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  CAS  PubMed  Google Scholar 

  49. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999

    Article  CAS  PubMed  Google Scholar 

  50. Mantovani A (2010) The growing diversity and spectrum of action of myeloid-derived suppressor cells. Eur J Immunol 40:3317–3320

    Article  CAS  PubMed  Google Scholar 

  51. Fridman WH et al (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71:5601–5605

    Article  CAS  PubMed  Google Scholar 

  52. Facciabene A et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475:226–230

    Article  CAS  PubMed  Google Scholar 

  53. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13:5262–5270

    Article  CAS  PubMed  Google Scholar 

  54. Hao N-B et al (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098–948011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gabrilovich DI et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    Article  CAS  PubMed  Google Scholar 

  56. Curiel TJ et al (2003) Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat Med 9:562–567

    Article  CAS  PubMed  Google Scholar 

  57. Whiteside TL, Mandapathil M, Schuler P (2011) The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem 18:5217–5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang L et al (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Investig 111:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  CAS  PubMed  Google Scholar 

  61. Barsoum IB et al (2011) Hypoxia induces escape from innate immunity in Cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res 71:7433–7441

    Article  CAS  PubMed  Google Scholar 

  62. Chen X et al (2017) Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep 38:522–528

    Article  CAS  PubMed  Google Scholar 

  63. Wang X et al (2018) Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res 78(16):4586–4598. https://doi.org/10.1158/0008-5472.CAN-17-3841

    Article  CAS  PubMed  Google Scholar 

  64. Berchem G et al (2016) Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology 5:e1062968

    Article  PubMed  CAS  Google Scholar 

  65. Ye S-B et al (2016) Exosomal miR-24-3p impedes T-cell function by targeting FGF11and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol 240:329–340

    Article  CAS  PubMed  Google Scholar 

  66. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  CAS  PubMed  Google Scholar 

  67. Sudhan DR, Siemann DW (2013) Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis 30:891–902

    Article  CAS  PubMed  Google Scholar 

  68. Krishnamachary B et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–1143

    CAS  PubMed  Google Scholar 

  69. Erler JT et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen Y et al (2016) Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space. J Biol Chem 291:25799–25808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eisinger-Mathason TSK et al (2013) Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov 3:1190–1205

    Article  CAS  PubMed  Google Scholar 

  72. Gilkes DM et al (2013) Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol Cancer Res 11:456–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chaturvedi P, Gilkes DM, Takano N, Semenza GL (2014) Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci 111:E2120–E2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaturvedi P et al (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 123:189–205

    Article  CAS  PubMed  Google Scholar 

  75. Haemmerle M et al (2016) FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest 126:1885–1896

    Article  PubMed  PubMed Central  Google Scholar 

  76. Díaz B, Yuen A, Iizuka S, Higashiyama S, Courtneidge SA (2013) Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia. J Cell Biol 201:279–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ramteke A et al (2015) Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 54:554–565

    Article  CAS  PubMed  Google Scholar 

  78. Li L et al (2016) Exosomes derived from hypoxic Oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a Prometastatic phenotype. Cancer Res 76:1770–1780

    Article  CAS  PubMed  Google Scholar 

  79. Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782

    CAS  PubMed  Google Scholar 

  80. Zucchella M et al (1989) Human tumor cells cultured ‘in vitro’ activate platelet function by producing ADP or thrombin. Haematologica 74:541–545

    CAS  PubMed  Google Scholar 

  81. Bastida E, Ordinas A, Giardina SL, Jamieson GA (1982) Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Res 42:4348–4352

    CAS  PubMed  Google Scholar 

  82. Pinto S et al (1993) Increased thromboxane A2 production at primary tumor site in metastasizing squamous cell carcinoma of the larynx. Prostaglandins Leukot Essent Fatty Acids 49:527–530

    Article  CAS  PubMed  Google Scholar 

  83. Monteiro RQ et al (2016) Hypoxia regulates the expression of tissue factor pathway signaling elements in a rat glioma model. Oncol Lett 12:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gong L, Cai Y, Zhou X, Yang H (2012) Activated platelets interact with lung cancer cells through P-selectin glycoprotein ligand-1. Pathol Oncol Res 18:989–996

    Article  CAS  PubMed  Google Scholar 

  85. Nieswandt B, Hafner M, Echtenacher B, Männel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300

    CAS  PubMed  Google Scholar 

  86. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Palumbo JS, Degen JL (2007) Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res 120(Suppl 2):S22–S28

    Article  PubMed  Google Scholar 

  88. Kopp H-G, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69:7775–7783

    Article  CAS  PubMed  Google Scholar 

  89. Labelle M, Hynes RO (2012) The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during Hematogenous dissemination. Cancer Discov 2:1091–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Placke T et al (2012) Platelet-derived MHC class I confers a Pseudonormal phenotype to Cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 72:440–448

    Article  CAS  PubMed  Google Scholar 

  92. Granot Z et al (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20:300–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reymond N, d'Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870

    Article  CAS  PubMed  Google Scholar 

  94. Zhang H et al (2011) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31:1757–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Gupta GP et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770

    Article  CAS  PubMed  Google Scholar 

  96. Wolf MJ et al (2012) Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22:91–105

    Article  CAS  PubMed  Google Scholar 

  97. Weis S, Cui J, Barnes L, Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167:223–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang Y et al (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69:7529–7537

    Article  CAS  PubMed  Google Scholar 

  99. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell Transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24:130–137

    Article  CAS  PubMed  Google Scholar 

  100. Lee E et al (2014) Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5:112

    Article  CAS  Google Scholar 

  101. Cox TR et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wong CCL et al (2014) Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology 60:1645–1658

    Article  CAS  PubMed  Google Scholar 

  103. Manisterski M, Golan M, Amir S, Weisman Y, Mabjeesh N (2014) Hypoxia induces PTHrP gene transcription in human cancer cells through the HIF-2α. Cell Cycle 9:3747–3753

    Article  CAS  Google Scholar 

  104. Guise TA et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Investig 98:1544–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mazzieri R et al (2011) Targeting the ANG2/TIE2 Axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526

    Article  CAS  PubMed  Google Scholar 

  106. Oskarsson T et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Loo JM et al (2015) Extracellular metabolic energetics can promote cancer progression. Cell 160:393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant 1U54CA210173-01. We apologize to other researchers whose work we could not cite owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Karin Eisinger-Mathason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Ciotti, G.E., Eisinger-Mathason, T.S.K. (2019). Hypoxia and the Tumor Secretome. In: Gilkes, D. (eds) Hypoxia and Cancer Metastasis. Advances in Experimental Medicine and Biology, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-030-12734-3_4

Download citation

Publish with us

Policies and ethics