Skip to main content

Classification in Data Compression

  • Chapter
  • First Online:
Hybrid and Advanced Compression Techniques for Medical Images
  • 392 Accesses

Abstract

This chapter covers the classification of various data compression techniques. The classification of these techniques can be done by various factors such as quality of compressed data, used coding techniques, types of data, and based on applications. This chapter also covers the comparison of existing techniques available in the literature based on various features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2018). A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications. Journal of King Saud University-Computer and Information Sciences, 1–22.

    Google Scholar 

  2. Drost, G. W., & Bourbakis, N. G. (2001). A hybrid system for real-time lossless image compression. Microprocessors and Microsystems, 25(1), 19–31.

    Article  Google Scholar 

  3. Zhang, Y., & Li, J. (2007). Linear predictor-based lossless compression of vibration sensor data: Systems approach. Journal of Engineering Mechanics, 133(4), 431–441.

    Article  Google Scholar 

  4. Huffman, D. A. (1952). A technique for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9), 1098–1101.

    Article  Google Scholar 

  5. Capon, J. (1959). A probabilistic model for run-length coding of pictures. IRE Transactions on Information Theory, 5(4), 157–163.

    Article  MathSciNet  Google Scholar 

  6. Narasimha, M., & Peterson, A. (1978). On the computation of the discrete cosine transform. IEEE Transactions on Communications, 26(6), 934–936.

    Article  MATH  Google Scholar 

  7. Langdon, G. G. (1984). An introduction to arithmetic coding. IBM Journal of Research and Development, 28(2), 135–149.

    Article  MathSciNet  MATH  Google Scholar 

  8. Langdon, G., & Rissanen, J. (1981). Compression of black-white images with arithmetic coding. IEEE Transactions on Communications, 29(6), 858–867.

    Article  Google Scholar 

  9. Langdon, G., & Rissanen, J. (1983). A double-adaptive file compression algorithm. IEEE Transactions on Communications, 31(11), 1253–1255.

    Article  MATH  Google Scholar 

  10. Todd, S., Langdon, G. G., & Rissanen, J. (1985). Parameter reduction and context selection for compression of gray-scale images. IBM Journal of Research and Development, 29(2), 188–193.

    Article  Google Scholar 

  11. Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, 23(3), 337–343.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24(5), 530–536.

    Article  MathSciNet  MATH  Google Scholar 

  13. Welch, T. A. (1984). Technique for high-performance data compression. Computer, (52), 17(6), 8 - 19..

    Article  Google Scholar 

  14. Saupe, D., & Hamzaoui, R. (1994). A review of the fractal image compression literature. ACM SIGGRAPH Computer Graphics, 28(4), 268–276.

    Article  Google Scholar 

  15. Burrows, M., & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm. California: Systems Research Center. Weblink: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.8069. Last Access: November 2018.

    Google Scholar 

  16. Gersho, A., & Gray, R. M. (2012). Vector quantization and signal compression (Vol. 159). Springer Science & Business Media, Germany.

    Google Scholar 

  17. Abel, J., & Teahan, W. (2005). Universal text preprocessing for data compression. IEEE Transactions on Computers, 54(5), 497–507.

    Article  Google Scholar 

  18. Platoš, J., Snášel, V., & El-Qawasmeh, E. (2008). Compression of small text files. Advanced Engineering Informatics, 22(3), 410–417.

    Article  Google Scholar 

  19. Robert, L., & Nadarajan, R. (2009). Simple lossless preprocessing algorithms for text compression. IET Software, 3(1), 37–45.

    Article  Google Scholar 

  20. Ullah, F., & Yahya, K. M. (2012, March). A new data compression technique using an evolutionary programming approach. In International multi topic conference (pp. 524–531). Berlin/Heidelberg: Springer.

    Google Scholar 

  21. Mahmud, S. (2012). An improved data compression technique for general data. International Journal of Scientific and Engineering Research, 3(3), 1–4.

    Google Scholar 

  22. Kalajdzic, K., Ali, S. H., & Patel, A. (2015). Rapid lossless compression of short text messages. Computer Standards & Interfaces, 37, 53–59.

    Article  Google Scholar 

  23. De Agostino, S. (2015). The greedy approach to dictionary-based static text compression on a distributed system. Journal of Discrete Algorithms, 34, 54–61.

    Article  MathSciNet  MATH  Google Scholar 

  24. Che, W., Zhao, Y., Guo, H., Su, Z., & Liu, T. (2015). Sentence compression for aspect-based sentiment analysis. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 23(12), 2111–2124.

    Article  Google Scholar 

  25. Oswald, C., Ghosh, A. I., & Sivaselvan, B. (2015, December). Knowledge engineering perspective of text compression. In India conference (INDICON), 2015 annual IEEE (pp. 1–6). IEEE.

    Google Scholar 

  26. Oswald, C., & Sivaselvan, B. (2018). An optimal text compression algorithm based on frequent pattern mining. Journal of Ambient Intelligence and Humanized Computing, 9(3), 803–822.

    Article  Google Scholar 

  27. Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12), 3445–3462.

    Article  MATH  Google Scholar 

  28. Rao, Y. R., & Eswaran, C. (1996). New bit rate reduction techniques for block truncation coding. IEEE Transactions on Communications, 44(10), 1247–1250.

    Article  Google Scholar 

  29. Luo, J., Chen, C. W., Parker, K. J., & Huang, T. S. (1996). Artifact reduction in low bit rate DCT-based image compression. IEEE Transactions on Image Processing, 5(9), 1363–1368.

    Article  Google Scholar 

  30. Wang, Z., & Zhang, D. (1998). A novel approach for reduction of blocking effects in low-bit-rate image compression. IEEE Transactions on Communications, 46(6), 732–734.

    Article  Google Scholar 

  31. Liu, Y. K., & Žalik, B. (2005). An efficient chain code with Huffman coding. Pattern Recognition, 38(4), 553–557.

    Article  Google Scholar 

  32. Sanchez-Cruz, H., & Rodriguez-Dagnino, R. M. (2005). Compressing bilevel images by means of a three-bit chain code. Optical Engineering, 44(9), 097004.

    Article  Google Scholar 

  33. Rad, R. M., Attar, A., & Shahbahrami, A. (2013). A predictive algorithm for multimedia data compression. Multimedia Systems, 19(2), 103–115.

    Article  Google Scholar 

  34. Yin, H., & Hu, H. (2014, March). An efficient lossless image compression algorithm for external memory bandwidth saving. In Data Compression Conference (DCC), 2014 (pp. 435–435). IEEE.

    Google Scholar 

  35. Alzahir, S., & Borici, A. (2015). An innovative lossless compression technique for discrete-color images. IEEE Transactions on Image Processing, 24(1), 44–56.

    Article  MathSciNet  MATH  Google Scholar 

  36. Babu, S. A., Eswaran, P., & Kumar, C. S. (2016). Lossless compression algorithm using improved RLC for grayscale image. Arabian Journal for Science and Engineering, 41(8), 3061–3070.

    Article  Google Scholar 

  37. Khan, A., Khan, A., Khan, M., & Uzair, M. (2017). Lossless image compression: Application of Bi-level Burrows Wheeler Compression Algorithm (BBWCA) to 2-D data. Multimedia Tools and Applications, 76(10), 12391–12416.

    Article  Google Scholar 

  38. Kumar, M., & Vaish, A. (2017). An efficient encryption-then-compression technique for encrypted images using SVD. Digital Signal Processing, 60, 81–89.

    Article  Google Scholar 

  39. Auristin, F. N., & Mali, S. D. (2016). Advanced audio compression for lossless audio coding using Ieee 1857.2. International Journal of Engineering and Computer Science, 5(9), 18124 - 18127.

    Google Scholar 

  40. Jain, D., & Ogale, J. V. (2017). A modified technique for sound compression using intrinsic mode functions. International Journal of Modern Electronics and Communication Engineering, 5(1), 97–102.

    Google Scholar 

  41. Hang, B., Wang, Y., & Kang, C. (2016). A scalable variable bit rate audio codec based on audio attention analysis. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 39(6), 114–120.

    Google Scholar 

  42. Watkinson, J. (2004). The MPEG handbook: MPEG-1, MPEG-2, MPEG-4, ser. Broadcasting and communications. Elsevier, Netherlands.

    Chapter  Google Scholar 

  43. Sayood, K. (2017). Introduction to data compression. Morgan Kaufmann, USA.

    Google Scholar 

  44. Marcelloni, F., & Vecchio, M. (2008). A simple algorithm for data compression in wireless sensor networks. IEEE Communications Letters, 12(6), 411–413.

    Article  Google Scholar 

  45. Kolo, J. G., Shanmugam, S. A., Lim, D. W. G., Ang, L. M., & Seng, K. P. (2012). An adaptive lossless data compression scheme for wireless sensor networks. Journal of Sensors, 2012, 1–21.

    Article  Google Scholar 

  46. Ruxanayasmin, B., Krishna, B. A., & Subhashini, T. (2013). Implementation of data compression techniques in mobile Ad hoc networks. International Journal of Computer Applications, 80(8), 8–12.

    Article  Google Scholar 

  47. Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2016). Rate-distortion balanced data compression for wireless sensor networks. IEEE Sensors Journal, 16(12), 5072–5083.

    Article  Google Scholar 

  48. Wu, M., Tan, L., & Xiong, N. (2016). Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Information Sciences, 329, 800–818.

    Article  Google Scholar 

  49. Uthayakumar, J., Vengattaraman, T., & Amudhavel, J. (2017). A simple lossless compression algorithm in wireless sensor networks: An application of seismic data. IIOAB Journal, 8(2), 274–280.

    Google Scholar 

  50. Uthayakumar, J., Vengattaraman, T., & Amudhavel, J. (2017). A simple lossless compression algorithm in wireless sensor networks: An application of plant data. IIOAB Journal, 8(2), 281–288.

    Google Scholar 

  51. Nielsen, M., Kamavuako, N., Andersen, M. M., Lucas, M. F., & Farina, D. (2006, May). Biomedical signal compression with optimized wavelets. In Acoustics, speech and signal processing, 2006. ICASSP 2006 proceedings. 2006 IEEE international conference on (Vol. 2, pp. II–II). IEEE.

    Google Scholar 

  52. Nielsen, M., Kamavuako, E. N., Andersen, M. M., Lucas, M. F., & Farina, D. (2006). Optimal wavelets for biomedical signal compression. Medical and Biological Engineering and Computing, 44(7), 561–568.

    Article  Google Scholar 

  53. Brechet, L., Lucas, M. F., Doncarli, C., & Farina, D. (2007). Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection. IEEE Transactions on Biomedical Engineering, 54(12), 2186–2192.

    Article  Google Scholar 

  54. Ranjeet, K., Kumar, A., & Pandey, R. K. (2011). ECG signal compression using different techniques. In Advances in computing, communication and control (pp. 231–241). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  55. Sevak, M. M., Thakkar, F. N., Kher, R. K., & Modi, C. K. (2012, May). CT image compression using compressive sensing and wavelet transform. In Communication systems and Network Technologies (CSNT), 2012 international conference on (pp. 138–142). IEEE.

    Google Scholar 

  56. Khan, T. H., & Wahid, K. A. (2014). White and narrow band image compressor based on a new color space for capsule endoscopy. Signal Processing: Image Communication, 29(3), 345–360.

    Google Scholar 

  57. Dutta, T. (2015). Medical data compression and transmission in wireless ad hoc networks. IEEE Sensors Journal, 15(2), 778–786.

    Article  MathSciNet  Google Scholar 

  58. Venugopal, D., Mohan, S., & Raja, S. (2016). An efficient block based lossless compression of medical images. Optik-International Journal for Light and Electron Optics, 127(2), 754–758.

    Article  Google Scholar 

  59. Amri, H., Khalfallah, A., Gargouri, M., Nebhani, N., Lapayre, J. C., & Bouhlel, M. S. (2017). Medical image compression approach based on image resizing, digital watermarking and lossless compression. Journal of Signal Processing Systems, 87(2), 203–214.

    Article  Google Scholar 

  60. Patauner, C., Marchioro, A., Bonacini, S., Rehman, A. U., & Pribyl, W. (2011). A lossless data compression system for a real-time application in HEP data acquisition. IEEE Transactions on Nuclear Science, 58(4), 1738–1744.

    Article  Google Scholar 

  61. Louie, H., & Miguel, A. (2012). Lossless compression of wind plant data. IEEE Transactions on Sustainable Energy, 3(3), 598–606.

    Article  Google Scholar 

  62. Mahmood, A., Islam, N., Nigatu, D., & Henkel, W. (2014, August). DNA inspired bi-directional Lempel-Ziv-like compression algorithms. In Turbo codes and iterative information processing (ISTC), 2014 8th international symposium on (pp. 162–166). IEEE.

    Google Scholar 

  63. Muthukumaran, N., & Ravi, R. (2015). The performances analysis of fast efficient lossless satellite image compression and decompression for wavelet-based algorithm. Wireless Personal Communications, 81(2), 839–859.

    Article  Google Scholar 

  64. Nibali, A., & He, Z. (2015). Trajic: An effective compression system for trajectory data. IEEE Transactions on Knowledge and Data Engineering, 27(11), 3138–3151.

    Article  Google Scholar 

  65. Cheng, K. O., Wu, P., Law, N. F., & Siu, W. C. (2015). Compression of multiple DNA sequences using intra-sequence and inter-sequence similarities. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 12(6), 1322–1332.

    Article  Google Scholar 

  66. Fan, B., Aeron, S., Pedrycz, A., & Valero, H. P. (2017). On acoustic signal compression for ultrasonic borehole imaging. IEEE Transactions on Computational Imaging, 3(2), 330–343.

    Article  MathSciNet  Google Scholar 

  67. You, C. (2018). Near-lossless compression/decompression algorithms for digital data transmitted over fronthaul in C-RAN. Wireless Networks, 24(2), 533–548.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thanki, R.M., Kothari, A. (2019). Classification in Data Compression. In: Hybrid and Advanced Compression Techniques for Medical Images. Springer, Cham. https://doi.org/10.1007/978-3-030-12575-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12575-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12574-5

  • Online ISBN: 978-3-030-12575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics