Skip to main content

A Survey on the Pain Threshold and Its Use in Robotics Safety Standards

  • Chapter
  • First Online:
Robotics and Well-Being

Abstract

Physical contact between humans and robots is becoming more common, for example with personal care robots, in human–robot collaborative tasks, or with social robots. Traditional safety standards in robotics have emphasised separation between humans and robots, but physical contact now becomes part of a robot’s normal function. This motivates new requirements, beyond safety standards that deal with the avoidance of contact and prevention of physical injury, to handle the situation of expected contact combined with the avoidance of pain. This paper reviews the physics and characteristics of human–robot contact, and summarises a set of key references from the pain literature, relevant for the definition of robotics safety standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bicchi A, Bavaro M, Boccadamo G, De Carli D, Filippini R, Grioli G, Piccigallo M, Rosi A, Schiavi R, Sen S, et al (2008a) Physical human-robot interaction: dependability, safety, and performance. In: 10th IEEE international workshop on advanced motion control, 2008. AMC’08. IEEE, pp 9–14

    Google Scholar 

  2. Bicchi A, Peshkin MA, Colgate JE (2008b) Safety for physical human–robot interaction. In: Handbook of robotics. Springer, pp 1335–1348

    Google Scholar 

  3. Cathcart S, Pritchard D (2006) Reliability of pain threshold measurement in young adults. J Headache Pain 7(1):21–26

    Article  Google Scholar 

  4. Cherubini A, Passama R, Crosnier A, Lasnier A, Fraisse P (2016) Collaborative manufacturing with physical human-robot interaction. Robot Comput-Integr Manuf 40:1–13

    Article  Google Scholar 

  5. Chesterton LS, Barlas P, Foster NE, Baxter GD, Wright CC (2003) Gender differences in pressure pain threshold in healthy humans. Pain 101(3):259–266

    Article  Google Scholar 

  6. De Luca A, Flacco F (2012) Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 288–295

    Google Scholar 

  7. De Santis A, Siciliano B (2007) Reactive collision avoidance for safer human–robot interaction. In: 5th IARP/IEEE RAS/EURON workshop on technical challenges for dependable robots in human environments

    Google Scholar 

  8. De Santis A, Siciliano B, De Luca A, Bicchi A (2008) An atlas of physical human-robot interaction. Mech Mach Theory 43(3):253–270

    Article  Google Scholar 

  9. Defrin R, Ronat A, Ravid A, Peretz C (2003) Spatial summation of pressure pain: effect of body region. Pain 106(3):471–480

    Article  Google Scholar 

  10. Fabio Antonaci M (1998) Pressure algometry in healthy subjects: inter-examiner variability. Scand J Rehab Med 30(3):8

    Google Scholar 

  11. Fischer AA (1987) Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain 30(1):115–126

    Article  Google Scholar 

  12. Fraichard T (2007) A short paper about motion safety. In: 2007 IEEE international conference on robotics and automation. IEEE, pp 1140–1145

    Google Scholar 

  13. Fryman J, Matthias B (2012) Safety of industrial robots: from conventional to collaborative applications. In: 7th German conference on robotics ROBOTIK 2012. pp 1–5

    Google Scholar 

  14. Haddadin S, Croft E (2016) Physical human-robot interaction. Springer, Cham, pp 1835–1874

    Google Scholar 

  15. Haddadin S, Albu-Schäffer A, Hirzinger G (2007) Safe physical human-robot interaction: Measurements, analysis and new insights, vol 66, pp 395–407. ISRR, Springer

    Google Scholar 

  16. Haddadin S, Albu-Schäffer A, Hirzinger G (2010) Safety analysis for a human-friendly manipulator. Int. J. Soc. Robot. 2(3):235–252

    Article  Google Scholar 

  17. Haddadin S, Haddadin S, Khoury A, Rokahr T, Parusel S, Burgkart R, Bicchi A, Albu-Schäffer A (2012) A truly safely moving robot has to know what injury it may cause. In: 2012 IEEE/RSJ international conference on intelligent robots and Systems (IROS). IEEE, pp 5406–5413

    Google Scholar 

  18. Harper C, Virk G (2010) Towards the development of international safety standards for human robot interaction. Int J Soc Robot 2(3):229–234

    Article  Google Scholar 

  19. Hayes SC, Bissett RT, Korn Z, Zettle RD et al (1999) The impact of acceptance versus control rationales on pain tolerance. Psychol Rec 49(1):33

    Article  Google Scholar 

  20. Heinzmann J, Zelinsky A (2003) Quantitative safety guarantees for physical human-robot interaction. Int J Robot Res 22(7–8):479–504

    Article  Google Scholar 

  21. Ikuta K, Ishii H, Nokata M (2003) Safety evaluation method of design and control for human-care robots. In J Robot Res 22(5):281–297

    Article  Google Scholar 

  22. ISO (2011) Ts 15066: 2011: Robots and robotic devices collaborative robots. Technical report, International Organization for Standardization

    Google Scholar 

  23. Kargov A, Pylatiuk C, Martin J, Schulz S, Döderlein L (2004) A comparison of the grip force distribution in natural hands and in prosthetic hands. Disabil Rehab 26(12):705–711

    Article  Google Scholar 

  24. Keele K (1954) Pain-sensitivity tests: the pressure algometer. Lancet 263(6813):636–639

    Article  Google Scholar 

  25. Kinser AM, Sands WA, Stone MH (2009) Reliability and validity of a pressure algometer. J Strength Conditioning Res 23(1):312–314

    Article  Google Scholar 

  26. Knoop E, Baecher M, Wall V, Deimel R, Brock O, Beardsley P (2017) Handshakiness: benchmarking for human-robot hand interactions. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

  27. Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann-Manuf Technol 58(2):628–646

    Article  Google Scholar 

  28. Lacourt TE, Houtveen JH, van Doornen LJP (2017) Experimental pressure-pain assessments: test–retest reliability, convergence and dimensionality. Scand J Pain 3(1):31–37

    Article  Google Scholar 

  29. Laffranchi M, Tsagarakis NG, Caldwell DG (2009) Safe human robot interaction via energy regulation control. In: IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009. IEEE, pp 35–41

    Google Scholar 

  30. Lau IV, Viano DC (1986) The viscous criterion-bases and applications of an injury severity index for soft tissues. Technical report, SAE Technical Paper

    Google Scholar 

  31. Melia M, Schmidt M, Geissler B, König J, Krahn U, Ottersbach HJ, Letzel S, Muttray A (2015) Measuring mechanical pain: the refinement and standardization of pressure pain threshold measurements. Behav Res Methods 47(1):216–227

    Article  Google Scholar 

  32. Mewes D, Mauser F (2003) Safeguarding crushing points by limitation of forces. Int J Occup Safety Ergonomics 9(2):177–191

    Article  Google Scholar 

  33. Ohrbach R, Gale EN (1989) Pressure pain thresholds in normal muscles: reliability, measurement effects, and topographic differences. Pain 37(3):257–263

    Article  Google Scholar 

  34. Özcan A, Tulum Z, Pınar L, Başkurt F (2004) Comparison of pressure pain threshold, grip strength, dexterity and touch pressure of dominant and non-dominant hands within and between right-and left-handed subjects. J Korean Med Sci 19(6):874–878

    Article  Google Scholar 

  35. Park JJ, Haddadin S, Song JB, Albu-Schäffer A (2011) Designing optimally safe robot surface properties for minimizing the stress characteristics of human-robot collisions. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5413–5420

    Google Scholar 

  36. Povse B, Koritnik D, Bajd T, Munih M (2010) Correlation between impact-energy density and pain intensity during robot-man collision. In: 2010 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 179–183

    Google Scholar 

  37. Povse B, Haddadin S, Belder R, Koritnik D, Bajd T (2016) A tool for the evaluation of human lower arm injury: approach, experimental validation and application to safe robotics. Robotica 34(11):2499–2515

    Article  Google Scholar 

  38. Radi A (2013) Human injury model for small unmanned aircraft impacts. Tech report, Civil Aviation Safety Authority, Australia

    Google Scholar 

  39. Teo K, Chow CK, Vaz M, Rangarajan S, Yusuf S et al (2009) The prospective urban rural epidemiology (pure) study: examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am Heart J 158(1):1–7

    Article  Google Scholar 

  40. Wang Z, Peer A, Buss M (2009) An hmm approach to realistic haptic human-robot interaction. In: EuroHaptics conference, 2009 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2009. Third Joint, IEEE, pp 374–379

    Google Scholar 

  41. Weng YH, Chen CH, Sun CT (2009) Toward the human-robot co-existence society: on safety intelligence for next generation robots. Int J Soc Robot 1(4):267–282

    Article  Google Scholar 

  42. Wikipedia (2017a) Abbreviated injury scale. https://en.wikipedia.org/wiki/Abbreviated_Injury_Scale

  43. Wikipedia (2017b) Head injury criterion. https://en.wikipedia.org/wiki/Head_injury_criterion

  44. Yamada Y, Hirasawa Y, Huang SY, Umetani Y (1996) Fail-safe human/robot contact in the safety space. In: 5th IEEE international workshop on robot and human communication, 1996. pp 59–64. https://doi.org/10.1109/ROMAN.1996.568748

Download references

Acknowledgements

We thank Prof. Yoji Yamada and members of ISO TC 199/WG 12 for motivating discussion for the survey in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mylaeus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mylaeus, A., Vempati, A., Tranter, B., Siegwart, R., Beardsley, P. (2019). A Survey on the Pain Threshold and Its Use in Robotics Safety Standards. In: Aldinhas Ferreira, M., Silva Sequeira, J., Singh Virk, G., Tokhi, M., E. Kadar, E. (eds) Robotics and Well-Being. Intelligent Systems, Control and Automation: Science and Engineering, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-12524-0_13

Download citation

Publish with us

Policies and ethics