Skip to main content

Goldenberry (Physalis peruviana) Oil

  • Chapter
  • First Online:
Fruit Oils: Chemistry and Functionality

Abstract

Non-traditional fruits play an important role in human nutrition as an excellent source of bioactive phytochemicals. Highly valued for its unique flavor, texture and color, recent research had shown Physalis peruviana to be rich in lipid active compounds. Total lipids in the whole berry were 2.0%. In P. peruviana oil, linoleic and oleic were the main unsaturated fatty acids, while palmitic and stearic acids were the major saturates. Neutral lipids comprised more than 95% of total lipids in whole berry oil. Triacylglycerols were the predominant lipid class and constituted about 81% of total neutral lipids in the whole berry oil. The oil is also rich in phytosterols and tocopherols. Campesterol and β-sitosterol were the main sterols, while β- and γ-tocopherols were the main components in whole P. peruviana berry oil. β-Carotene and vitamin K1 were also measured in high levels in P. peruviana pulp/peel oil. This chapter provides a valuable source for current knowledge on bioactive lipids in P. peruviana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Breithaupt, D. E., & Bamedi, A. (2001). Carotenoid esters in vegetables and fruits: A screening with emphasis on β-cryptoxanthin esters. Journal of Agricultural and Food Chemistry, 49, 2064–2070.

    Article  CAS  Google Scholar 

  • Costa, P. A., Ballus, C. A., Teixeira-Filho, J., & Godoy, H. T. (2010). Phytosterols and tocopherols content of pulps and nuts of Brazilian fruits. Food Research International, 43, 1603–1606.

    Article  Google Scholar 

  • Coyne, T., Ibiebele, T. I., Baadr, P. D., Dobson, A., McClintock, C., Dunn, S., Leonard, D., & Shaw, J. (2005). Diabetes mellitus and serum carotenoids: Findings of a population-based study in Queensland. American Journal of Clinical Nutrition, 82, 685–693.

    Article  CAS  Google Scholar 

  • Damon, M., Zhang, N. Z., Haytowitz, D. B., & Booth, S. L. (2005). Phylloquinone (vitamin K1) content of vegetables. Journal of Food Composition and Analysis, 18, 751–758.

    Article  CAS  Google Scholar 

  • De Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55, 5062–5072.

    Article  Google Scholar 

  • Erkkilä, A. T., Booth, S. L., Hu, F. B., Jacques, P. F., & Lichtenstein, A. H. (2007). Phylloquinone intake and risk of cardiovascular diseases in men. Nutrition, Metabolism, and Cardiovascular Diseases, 17, 58–62.

    Article  Google Scholar 

  • Etzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chemistry, 245, 508–517.

    Article  CAS  Google Scholar 

  • Fraser, M. L., Lee, A. H., & Binns, C. W. (2005). Lycopene and prostate cancer: Emerging evidence. Expert Review of Anticancer Therapy, 5, 847–854.

    Article  CAS  Google Scholar 

  • Hassan, H. A., Serag, H. M., Qadir, M. S., & Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine & Pharmacotherapy, 94, 1129–1137.

    Article  CAS  Google Scholar 

  • Hassanien, M. F. R., & Moersel, J.-T. (2003). Das Physalisbeerenoel: Eine neuentdeckte Quelle an essentiellen Fettsaeuren, Phytosterolen und antioxidativen Vitaminen. Fluessiges-Obst, 7, 398–402.

    Google Scholar 

  • İzli, N., Yıldız, G., Ünal, H., Isık, E., & Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of goldenberry (Physalis peruviana L.). International Journal of Food Science and Technology. 2014, 49, 9–17.

    Article  Google Scholar 

  • Jakob, E., & Elmadfa, I. (2000). Rapid and simple HPLC analysis of vitamin K in food, tissue and blood. Food Chemistry, 68, 219–221.

    Article  CAS  Google Scholar 

  • Mayorga, H., Knapp, H., Winterhalter, P., & Duque, C. (2001). Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 49, 1904–1908.

    Article  CAS  Google Scholar 

  • McCain, R. (1993). Goldenberry, passionfruit and white sapote: Potential fruits for cool subtropical areas. In J. Janick & J. E. Simon (Eds.), New crops (pp. 479–486). New York: Wiley.

    Google Scholar 

  • Mokhtar, S. M., Swailam, H. M., & Embaby, H. E. (2018). Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry, 248, 1–7.

    Article  CAS  Google Scholar 

  • Morton, J. F. (1987). Cape Gooseberry. In J. F. Morton (Ed.), Fruits of warm climates (pp. 430–434). Winterville: Creative Resource Systems.

    Google Scholar 

  • Otles, S., & Cagindi, O. (2007). Determination of vitamin K1 content in olive oil, chard and human plasma by RP-HPLC method with UV-Vis detection. Food Chemistry, 100, 1220–1222.

    Article  CAS  Google Scholar 

  • Piironen, V., Koivu, T., Tammisalo, O., & Mattila, P. (1997). Determination of phylloquinone in oils, margarines and butter by high-performance liquid chromatography with electrochemical detection. Food Chemistry, 59, 473–480.

    Article  CAS  Google Scholar 

  • Popenoe, H., King, S. R., Leon, J., & Kalinowski, L. S. (1990). Goldenberry (cape gooseberry). In National Research council (Ed.), Lost crops of the Incas, little-known plants of the Andes with promise for worldwide cultivation (pp. 241–252). Washington, DC: National Academy Press.

    Google Scholar 

  • Ramadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44, 1830–1836.

    Article  CAS  Google Scholar 

  • Ramadan, M. F., & Mörsel, J.-T. (2003). Oil goldenberry (Physalis perviana L.). Journal of Agricultural and Food Chemistry, 51, 969–974.

    Article  CAS  Google Scholar 

  • Ramadan, M. F., & Mörsel, J.-T. (2004). Goldenberry: A novel fruit source of fat soluble bioactives. Inform, 15, 130–131.

    Google Scholar 

  • Ramadan, M. F., & Mörsel, J.-T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87, 452–460.

    Article  CAS  Google Scholar 

  • Ramadan, M. F., & Mörsel, J.-T. (2009). Oil extractability from enzymatically-treated goldenberry (Physalis peruviana L.) pomace: Range of operational variables. International Journal of Food Science and Technology, 44, 435–444.

    Article  CAS  Google Scholar 

  • Ramadan, M. F., Sitohy, M. Z., & Mörsel, J.-T. (2008). Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. European Food Research and Technology, 226, 1445–1458.

    Article  CAS  Google Scholar 

  • Rehm, S., & Espig, G. (1991). Fruit. In R. Sigmund & E. Gustav (Eds.), The cultivated plants of the topics and subtropics, cultivation, economic value, utilization (pp. 169–245). Weikersheim: Verlag Josef Margraf.

    Google Scholar 

  • Sharoba, A. M., & Ramadan, M. F. (2011). Rheological behavior and physicochemical characteristics of goldenberry (Physalis peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservation, 35, 201–219.

    Article  CAS  Google Scholar 

  • Shearer, M. J. (1992). Vitamin K metabolism and nutriture. Blood, 6, 92–104.

    Article  CAS  Google Scholar 

  • Toyosaki, T., Sakane, Y., & Kasai, M. (2008). Oxidative stability, trans,trans-2,4-decadienals, and tocopherol contents during storage of dough fried in soybean oil with added medium-chain triacylglycerols (MCT). Food Research International, 41, 318–324.

    Article  CAS  Google Scholar 

  • Wackerbarth, H., Stoll, T., Gebken, S., Pelters, C., & Bindrich, U. (2009). Carotenoid-protein interaction as an approach for the formulation of functional food emulsions. Food Research International, 42, 1254–1258.

    Article  CAS  Google Scholar 

  • Yıldız, G., İzli, N., Ünal, H., & Uylaşer, V. (2015). Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 52(4), 2320–2327.

    Article  Google Scholar 

  • Zhao, Y. (2007). In Y. Zhao (Ed.), Berry fruit, value-added products for health promotion. Boca Raton, NW: CRC Press. ISBN:0-8493-5802-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadan, M.F., Mörsel, JT. (2019). Goldenberry (Physalis peruviana) Oil. In: Ramadan, M. (eds) Fruit Oils: Chemistry and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_19

Download citation

Publish with us

Policies and ethics