Skip to main content

The Effect of Dopants on Diamond Surface Properties and Growth

  • Chapter
  • First Online:
Novel Aspects of Diamond

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

  • 1272 Accesses

Abstract

The purpose with the present studies has been to support and explain the experimental observations made regarding the effect by N-, P-, S- and B-doping on the diamond (111), (100)−2 × 1 and (110) growth rate, respectively. All surfaces were assumed to be H-terminated. Density functional theory calculations were used, based on a plane wave approach under periodic boundary conditions. It was shown that the surface H abstraction reaction is most probably the rate-limiting step during diamond growth. Moreover, the results showed that it is N, substitutionally positioned within the upper diamond surface, that will cause the growth rate improvement, and not nitrogen chemisorbed onto the growing surface in the form of either NH (or NH2). These results coupled very strongly to experimental counterparts. For the situation with P doping, there were no visible energy barrier obtained for the approaching H radical to any of the diamond surface planes. Hence, the growth rate must be appreciably increased as a function of doping with P. It was furthermore observed that S and B doping will lead to anomalous changes in the diamond growth rate (i.e., either increase or decrease), depending on the position of these two dopants in the lattice. These phenomena are also strongly supported by experimental observations where there are both increasing and decreasing effects of the diamond growth rate by S and B doping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Amaral, A.G. Dias, P.S. Gomes, M.A. Lopes, R.F. Silva, J.D. Santos, M.H. Fernando, Nanocrystalline diamond in vitro biocompatibility assessment by MG63 and human bone marrow cell cultures. J. Biomed. Mater. Res. A 87(1), 91–99 (2008). https://doi.org/10.1002/jbm.a.31742

    Article  CAS  Google Scholar 

  2. J.P. McEvoy, G.W. Brudvig, Water splitting of photosystem II. Chem. Rev. 106(11), 4455–4483 (2006). https://doi.org/10.1021/cr0204294

    Article  CAS  Google Scholar 

  3. M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51(2), 191–199 (2005). https://doi.org/10.1016/j.electacta.2005.04.023

    Article  CAS  Google Scholar 

  4. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892–7895 (1990). https://doi.org/10.1103/PhysRevB.41.7892

    Article  CAS  Google Scholar 

  5. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  6. D. Petrini, K. Larsson, Theoretical study of the thermodynamic and kinetic aspects of terminated (111) diamond surfaces. J. Phys. Chem. C 112(37), 14367–14376 (2008). https://doi.org/10.1021/jp709625a

    Article  CAS  Google Scholar 

  7. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  8. G.Z. Cao, J.J. Schermer, W.J.P. van Enckevort, W.A.L.M. Elst, L.J. Giling, Growth of 100 textured diamond films by the addition of nitrogen. J. Appl. Phys. 79(3), 1357–1364 (1996). https://doi.org/10.1063/1.361033

    Article  CAS  Google Scholar 

  9. W. Müller-Sebert, E. Wörner, F. Fuchs, C. Wild, P. Koidl, Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Appl. Phys. Lett. 68, 759–760 (1996). https://doi.org/10.1063/1.116733

  10. C.S. Yan, Y.K. Vohra, Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond. Diam. Relat. Mater. 8(2022), 2022–2031 (1999). https://doi.org/10.1016/S0925-9635(99)00148-X

    Article  CAS  Google Scholar 

  11. T. Liu, D. Raabe, Influence of nitrogen doping on growth rate and texture evolution of chemical vapor deposition diamond films. Appl. Phys. Lett. 94, 211191–211193 (2009). https://doi.org/10.1063/1.3072601

    Article  CAS  Google Scholar 

  12. S. Dunst, H. Sternschulte, M. Schreck, Growth rate enhancement by nitrogen in diamond chemical vapor deposition—a catalytic effect. Appl. Phys. Lett. 94, 224101–224103 (2009). https://doi.org/10.1063/1.3143631

    Article  CAS  Google Scholar 

  13. Y. Bar-Yam, T.D. Moustakas, Defect-induced stabilization of diamond films. Nature 342, 786 (1989). https://doi.org/10.1038/342786a0

    Article  CAS  Google Scholar 

  14. T. Frauenheim, G. Jungnickel, P. Sitch, M. Kaukonen, F. Weich, J. Widany, D. Porezag, A molecular dynamics study of N-incorporation into carbon systems: doping, diamond growth and nitride formation. Diam. Relat. Mater. 7, 348–355 (1998). https://doi.org/10.1016/S0925-9635(97)00186-6

    Article  CAS  Google Scholar 

  15. G.B. Bachelet, D.R. Hamann, M. Scluter, Pseudopotentials that work: from H to Pu. Phys. Rev. B 26, 4199–4219 (1982). https://doi.org/10.1103/PhysRevB.26.4199

    Article  CAS  Google Scholar 

  16. H. Sternschulte, M. Schreck, B. Stritzker, A. Bergmaier, G. Dollinger, Growth and properties of CVD diamond films grown under H2S addition. Diam. Relat. Mater. 12(3–7), 318–323 (2003). https://doi.org/10.1016/S0925-9635(02)00312-6

    Article  CAS  Google Scholar 

  17. R. Haubner, D. Sommer, Hot-filament diamond deposition with sulfur addition. Diam. Rel. Mater. 12(3), 298–305 (2003). https://doi.org/10.1016/S0925-9635(02)00342-4

    Article  CAS  Google Scholar 

  18. S. Bohr, R. Haubner, B. Lux, Influence of phosphorus addition on diamond CVD. Diam. Rel. Mater. 4(2), 133–144 (1995). https://doi.org/10.1016/0925-9635(94)00235-5

  19. Q. Liang, C. Yan, Y. Meng, J. Lai, S. Krasnicki, H. Mao, R.J. Hemley, Recent advances in high-growth rate single-crystal CVD diamond. Diam. Rel. Mater. 18(5), 698–703 (2009). https://doi.org/10.1016/j.diamond.2008.12.002

    Article  CAS  Google Scholar 

  20. H. Kato, J. Barjon, N. Habka, T. Matsumoto, D. Takeuchi, H. Okushi, S. Yamasaki, Energy level of compensator states in (001) phosphorus-doped diamond. Diam. Rel. Mater. 20(7), 1016–1019 (2011). https://doi.org/10.1016/j.diamond.2011.05.021

  21. H. Kato, T. Makino, S. Yamasaki, H. Okushi, n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D Appl. Phys. 40(20), 6189–6200 (2007). https://doi.org/10.1088/0022-3727/40/20/S05

    Article  CAS  Google Scholar 

  22. M. Nishitani-Gamo, C. Xiao, Y. Zhang, E. Yasu, Y. Kikuchi, I. Sakaguchi, T. Suzuki, Y. Sato, T. Ando, Homoepitaxial diamond growth with sulfur-doping by microwave plasma-assisted chemical vapor deposition. Thin Solid Films 382(1), 113–123 (2001). https://doi.org/10.1016/S0040-6090(00)01770-3

    Article  CAS  Google Scholar 

  23. S.C. Eaton, A.B. Anderson, J.C. Angus, Y.E. Evstefeeva, Y.V. Pleskov, Diamond growth in the presence of boron and sulfur. Diam. Rel. Mater. 12(10), 1627–1632 (2003). https://doi.org/10.1016/S0925-9635(03)00202-4

    Article  CAS  Google Scholar 

  24. S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl. Phys. Lett. 71(8), 1065–1067 (1997). https://doi.org/10.1063/1.119729

    Article  CAS  Google Scholar 

  25. T. Miyazaki, H. Kato, H. Okushi, S. Yamasaki, Ab initio energetics of phosphorus impurity in subsurface regions of hydrogenated diamond surfaces. Surf. Sci. Nanotech. 4, 124–128 (2006). https://doi.org/10.1380/ejssnt.2006.124

    Article  CAS  Google Scholar 

  26. H. Wada, T. Teraji, T. Ito, Growth and characterization of P-doped CVD diamond (111) thin films homoepitaxially grown using trimethylphosphine. Appl. Surf. Sci. 244(1), 305–309 (2005). https://doi.org/10.1016/j.apsusc.2004.10.137

    Article  CAS  Google Scholar 

  27. A. Mainwood, Theoretical modelling of dopants in diamond. J. Mater. Sci. Mater. Electron. 17(6), 453–458 (2006). https://doi.org/10.1007/s10854-006-8091-x

    Article  CAS  Google Scholar 

  28. T. Miyazaki, H. Okushi, Theoretical modeling of sulfur–hydrogen complexes in diamond. Diam. Rel. Mater. 11(3), 323–327 (2002). https://doi.org/10.1016/S0925-9635(01)00543-X

    Article  CAS  Google Scholar 

  29. E. Gheeraert, N. Casanova, A. Tajani, A. Deneuville, E. Bustarret, J.A. Garrido, C.E. Nebel, M. Stutzmann, n-Type doping of diamond by sulfur and phosphorus. Diam. Rel. Mater. 11(3), 289–295 (2002). https://doi.org/10.1016/S0925-9635(01)00683-5

    Article  CAS  Google Scholar 

  30. Z.M. Shah, A. Mainwood, A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces. Diam. Relat. Mater. 17(7), 1307–1310 (2008). https://doi.org/10.1016/j.diamond.2008.03.028

    Article  CAS  Google Scholar 

  31. R. Kalish, The search for donors in diamond. Diam. Relat. Mater. 10, 1749–1755 (2001). https://doi.org/10.1016/S0925-9635(01)00426-5

    Article  CAS  Google Scholar 

  32. S.A. Kajihara, A. Antonelli, J. Bernholc, R. Car, Nitrogen and potential n-type dopants in diamond. Phys. Rev. Lett. 66, 21101 (1991). https://doi.org/10.1103/PhysRevLett.66.2010

    Article  Google Scholar 

  33. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008). https://doi.org/10.1021/cr068076m

    Article  CAS  Google Scholar 

  34. Y.V. Pleskov, A.Y. Sakharova, M.D. Krotova, L.L. Bouilov, B.V. Spitsyn, Photoelectrochemical properties of semiconductor diamond. J. Electroanalyt. Chem. 228(1–2), 19–27 (1987). https://doi.org/10.1016/0022-0728(87)80093-1

  35. G.M. Swain, R. Ramesham, The electrochemical activity of boron-doped polycrystalline diamond thin-film electrodes. Analyt. Chem. 65(4), 345–351 (1993). https://doi.org/10.1021/ac00052a007

    Article  CAS  Google Scholar 

  36. A.W. Williams, E. Lightowl, A.T. Collins, Impurity conduction in synthetic semiconducting diamond. J. Phys. Part C Solid State Phys. 3(8), 1727 (1970). https://doi.org/10.1088/0022-3719/3/8/011

    Article  CAS  Google Scholar 

  37. R.M. Chrenko, Boron, dominant acceptor in semiconducting diamond. Phys. Rev. B 7(10), 4560–4567 (1973). https://doi.org/10.1103/PhysRevB.7.4560

    Article  CAS  Google Scholar 

  38. H.D. Li, T. Zhang, L. Li, X. Lü, B. Li, Z. Jin, G. Zou, Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films. J. Cryst. Growth 312(12–13), 1986–1991 (2010). https://doi.org/10.1016/j.jcrysgro.2010.03.020

  39. N.G. Ferreira, E. Abramof, E.J. Corat, V.J. Trava-Airoldi, Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon 41(6), 1301–1308 (2003). https://doi.org/10.1016/s0008-6223(03)00071-x

  40. K. Miyata, K. Kumagai, K. Nishimura, K. Kobashi, Morphology of heavily B-doped diamond films. J. Mater. Res. 8(11), 2845–2857 (1993). https://doi.org/10.1557/jmr.1993.2845

  41. J. Cifre, J. Puigdollers, M.C. Polo, J. Esteve, Trimethylboron doping of Cvd diamond thin-films. Diam. Rel. Mater. 3(4–6), 628–631 (1994). https://doi.org/10.1016/0925-9635(94)90238-0

  42. R. Haubner, S. Bohr, B. Lux, Comparison of P, N and B additions during CVD diamond deposition. Diam. Rel. Mater. 8(2–5), 171–178 (1999). https://doi.org/10.1016/S0925-9635(98)00270-2

    Article  CAS  Google Scholar 

  43. L. Wang, B. Shen, F. Sun, Z. Zhang, Effect of pressure on the growth of boron and nitrogen doped HFCVD diamond films on WC-Co substrate. Surf. Interface Anal. 47(5), 572–586 (2015). https://doi.org/10.1002/sia.5748

  44. P. Hartmann, S. Bohr, R. Haubner, B. Lux, P. Wurzinger, P. Wurzinger, M. Griesser, A. Bergmaier, G. Dolling, H. Sternschulte, R. Sauer, Diamond growth with boron addition. Inter. J. Refr. Metals Hard Mater. 16(3), 223–232 (1998). https://doi.org/10.1016/S0263-4368(98)00022-5

    Article  CAS  Google Scholar 

  45. H. Liu, D. Dandy, Diamond Chemical Vapor Deposition (Elsevier, Amsterdam, 1996)

    Google Scholar 

  46. K. Spear, J. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology (Wiley, London, 1994)

    Google Scholar 

  47. T. Van Regemorter, K. Larsson, Effect of substitutional N on important chemical vapor deposition diamond growth steps. J. Phys. Chem. A 113(13), 3274–3284 (2009). doi:CVDEFX

    Google Scholar 

  48. Z. Yiming, F. Larsson, K. Larsson, Effect of CVD diamond growth by doping with nitrogen. Theor. Chem. Acc. 133(2), 1432. https://doi.org/10.1007/s00214-013-1432-y

  49. C.J. Chu, R.H. Hauge, J.L. Margrave, M.P. D’Evelyn, Growth kinetics of (100), (110), and (111) homoepitaxial diamond films. Appl. Phys. Lett. 61, 1393 (1992). https://doi.org/10.1063/1.107548

    Article  CAS  Google Scholar 

  50. K. Larsson, J.-O. Carlsson, Surface migration during diamond growth studied by molecular orbital calculations. Phys. Rev. B 59, 8315 (1999). https://doi.org/10.1103/PhysRevB.59.8315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faculty of Uppsala University, and the Swedish Research Council (VR). The computational results were obtained using CASTEP from BIOVIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larsson, K. (2019). The Effect of Dopants on Diamond Surface Properties and Growth. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-12469-4_2

Download citation

Publish with us

Policies and ethics