Skip to main content

Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications

  • Chapter
  • First Online:
Book cover Novel Aspects of Diamond

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

Combining numerous unique assets, nanodiamonds are promising nanoparticles for biomedical applications. The present chapter focuses on the current knowledge of their properties. It shows how the control of their surface chemistry governs their colloidal behavior. This allows a fine tuning of their surface charge. Developments of bioapplications using nanodiamonds are summarized and further promising challenges for biomedicine are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.L. Etheridge, S.A. Campbell, A.G. Erdman, C.L. Haynes, S.M. Wolf, J. McCullough, The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed. Nanotechnol. Biol. Med. 9, 1–14 (2013). https://doi.org/10.1016/j.nano.2012.05.013

    Article  CAS  Google Scholar 

  2. Y. Matsumura, H. Maeda, A New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986) (WOS:A1986E976600069)

    Google Scholar 

  3. J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60, 1615–1626 (2008). https://doi.org/10.1016/j.addr.2008.08.005

    Article  CAS  Google Scholar 

  4. E.V. Batrakova, A.V. Kabanov, Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130, 98–106 (2008). https://doi.org/10.1016/j.jconrel.2008.04.013

    Article  CAS  Google Scholar 

  5. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). https://doi.org/10.1126/science.1104274

    Article  CAS  Google Scholar 

  6. T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000). https://doi.org/10.1126/science.289.5485.1757

    Article  CAS  Google Scholar 

  7. H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009). https://doi.org/10.1002/adma.200802366

    Article  CAS  Google Scholar 

  8. D. Yoo, J.H. Lee, T.H. Shin, J. Cheon, Theranostic magnetic nanoparticles. Acc. Chem. Res. 44, 863–874 (2011). https://doi.org/10.1021/ar200085c

    Article  CAS  Google Scholar 

  9. D. Georgin, B. Czarny, M. Botquin, M. Mayne-L’hermite, M. Pinault, B. Bouchet- Fabre, M. Carriere, J.L. Poncy, Q. Chau, R. Maximilien, V. Dive, F. Taran, Preparation of (14)C-labeled multiwalled carbon nanotubes for biodistribution investigations. J. Am. Chem. Soc. 131, 14658–14659 (2009). https://doi.org/10.1021/ja906319z

  10. C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011). https://doi.org/10.1016/j.addr.2011.03.008

    Article  CAS  Google Scholar 

  11. K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010). https://doi.org/10.1021/nl100996u

    Article  CAS  Google Scholar 

  12. K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33, 2206–2214 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.064

    Article  CAS  Google Scholar 

  13. P. Cherukuri, E.S. Glazer, S.A. Curley, Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62, 339–345 (2010). https://doi.org/10.1016/j.addr.2009.11.006

    Article  CAS  Google Scholar 

  14. J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315 (2004). https://doi.org/10.1088/0031-9155/49/18/N03

    Article  CAS  Google Scholar 

  15. E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe, Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21, 85103 (2010). https://doi.org/10.1088/0957-4484/21/8/085103

    Article  CAS  Google Scholar 

  16. L. Maggiorella, G. Barouch, C. Devaux, A. Pottier, E. Deutsch, J. Bourhis, E. Borghi, L. Levy, Nanoscale radiotherapy with hafnium oxide nanoparticles. Futur. Oncol. 8, 1167–1181 (2012). https://doi.org/10.2217/FON.12.96

    Article  CAS  Google Scholar 

  17. M.J. Sailor, J.H. Park, Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012). https://doi.org/10.1002/adma.201200653

    Article  CAS  Google Scholar 

  18. W.T. Al-Jamal, K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44, 1094–10104 (2011). https://doi.org/10.1021/ar200105p

    Article  CAS  Google Scholar 

  19. M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008). https://doi.org/10.1021/nn800072t

    Article  CAS  Google Scholar 

  20. G. Wu, A. Mikhailovsky, H.A. Khant, C. Fu, W. Chiu, J.A. Zasadzinski, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc. 130, 8175–8177 (2008). https://doi.org/10.1021/ja802656d

    Article  CAS  Google Scholar 

  21. E. Perevedentseva, Y.C. Lin, M. Jani, C.L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Nanomedecine 8, 2041–2060 (2013). https://doi.org/10.2217/NNM.13.183

    Article  CAS  Google Scholar 

  22. O.A. Shenderova, G.E. McGuire, Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases 10(030802), 1–24 (2015). https://doi.org/10.1116/1.4927679

    Article  Google Scholar 

  23. K. Turcheniuk, V.N. Mochalin, Biomedical applications of nanodiamond. Nanotechnology 28, 252001 (2017). https://doi.org/10.1088/1361-6528/aa6ae4

    Article  CAS  Google Scholar 

  24. H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe, M.G. Bawendi, J.V. Frangioni, Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007). https://doi.org/10.1038/nbt1340

    Article  CAS  Google Scholar 

  25. V. Vyjayanthimala, Y.K. Tzeng, H.C. Chang, C.L. Li, The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20, 425103 (2009). https://doi.org/10.1088/0957-4484/20/42/425103

    Article  CAS  Google Scholar 

  26. Y. Yuan, X. Wang, G. Jia, J.H. Liu, T. Wang, Y. Gu, S.T. Yang, S. Zhen, H. Wang, Y. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice. Diam. Relat. Mater. 19, 291–299 (2010). https://doi.org/10.1016/j.diamond.2009.11.022

    Article  CAS  Google Scholar 

  27. A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18–74 (2009). https://doi.org/10.1080/10408430902831987

    Article  CAS  Google Scholar 

  28. V. Paget, J.A. Sergent, R. Grall, S. Altmeyer-Morel, H.A. Girard, T. Petit, G. Gesset, M. Mermoux, P. Bergonzo, J.C. Arnault, S. Chevillard, Nanodiamonds are neither cytotoxic nor genotoxic on kidney, intestine, lung and liver human cell lines. Nanotoxicology. https://doi.org/10.3109/17435390.2013.855828

  29. H. Moche, V. Paget, D. Chevalier, E. Lorge, N. Claude, H.A. Girard, J.C. Arnault, S. Chevillard, F. Nesslany, Carboxylated nanodiamonds can be used as negative reference in in vitro nanogenotoxicity studies. J. Appl. Toxicol. 37, 954–961 (2017). https://doi.org/10.1002/jat.3443

    Article  CAS  Google Scholar 

  30. B. Zhang, Y. Li, C.Y. Fang, C.C. Chang, C.S. Chen, Y.Y. Chen, H.C. Chang, Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5, 2716–2721 (2009). https://doi.org/10.1002/smll.200900725

    Article  CAS  Google Scholar 

  31. A. Alhaddad, M.P. Adam, J. Botsoa, G. Dantelle, S. Perruchas, T. Gacoin, C. Mansuy, S. Lavielle, C. Malvy, F. Treussart, J.R. Bertrand, Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7, 3087–3095 (2011). https://doi.org/10.1002/smll.201101193

    Article  CAS  Google Scholar 

  32. A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22, 890–906 (2012). https://doi.org/10.1002/adfm.201102670

    Article  CAS  Google Scholar 

  33. A. Alhaddad, C. Durieu, G. Dantelle, E. Le Cam, C. Malvy et al., Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PLoS ONE 7(12), e52207 (2012). https://doi.org/10.1371/journal.pone.0052207

    Article  CAS  Google Scholar 

  34. J.R. Bertrand, C. Pioche-Durieu, J. Ayala, T. Petit, H.A. Girard, C. Malvy, E. Le Cam, F. Treussart, J.C. Arnault, Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials 45, 93–98 (2015). https://doi.org/10.1016/j.biomaterials.2014.12.007

    Article  CAS  Google Scholar 

  35. K.K. Liu, W.W. Zheng, C.C. Wang, Y.C. Chiu, C.L. Cheng, Y.S. Lo, C. Chen, J.I. Chao, Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21, 315106 (2010). https://doi.org/10.1088/0957-4484/21/31/315106

    Article  CAS  Google Scholar 

  36. E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21(2011). https://doi.org/10.1126/scitranslmed.3001713

  37. J. Li, Y. Zhu, W. Li, X. Zhang, P. Peng, Q. Huang, Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31, 8410–8418 (2010). https://doi.org/10.1016/j.biomaterials.2010.07.058

    Article  CAS  Google Scholar 

  38. L. Moore, V. Grobarova, H. Shen, H.B. Man, J. Mičova, M. Ledvina, J. Štursa, M. Nesladek, A. Fišerova, D. Ho, Comprehensive Interrogation of the Cellular Response to Fluorescent. Detonation and Functionalized Nanodiamonds. Nanoscale 6, 11712–11721 (2014). https://doi.org/10.1039/c4nr02570a

    Article  CAS  Google Scholar 

  39. D. Ho, A. Zappinpar, E.K. Chow, Diamonds, digital health, and drug development: optimizing combinatorial nanomedicine. ACS Nano 10, 9087–9092 (2016). https://doi.org/10.1021/acsnano.6b06174

    Article  CAS  Google Scholar 

  40. Y.R. Chang, H.Y. Lee, K. Chen, C.C. Chang, D.S. Tsai, C.C. Fu, T.S. Lim, Y.K. Tzeng, C.Y. Fang, C.C. Han, H.C. Chang, W. Fann, Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotech. 3, 284–288 (2008). https://doi.org/10.1038/nnano.2008.99

    Article  CAS  Google Scholar 

  41. J.I. Chao, E. Perevedentseva, P.H. Chung, K.K. Liu, C.Y. Cheng, C.C. Chang, C.L. Cheng, Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007). https://doi.org/10.1529/biophysj.107.108134

    Article  CAS  Google Scholar 

  42. Y.Y. Hui, W. Wei-Wen Hsiao, S. Haziza, M. Simonneau, F. Treussart, H.C. Chang, Single particle tracking of fluorescent nanodiamonds in cells and organisms. Curr. Opin. Solid State Mater. Sci. 21, 35–42 (2016). https://doi.org/10.1016/j.cossms.2016.04.002

    Article  CAS  Google Scholar 

  43. R. Grall, H.A. Girard, L. Saad, T. Petit, C. Gesset, M. Combis-Schlumberger, V. Paget, J. Delic, J.C. Arnault, S. Chevillard, Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 61, 290–298 (2015). https://doi.org/10.1016/j.biomaterials.2015.05.034

    Article  CAS  Google Scholar 

  44. M. Kurzyp, H.A. Girard, Y. Cheref, E. Brun, C. Sicard-Roselli, S. Saada, J.C. Arnault, Hydroxyl radical production induced by plasma hydrogenated nanodiamonds under X-ray irradiation. Chem. Commun. 53, 1237–1240 (2017). https://doi.org/10.1039/c6cc08895c

    Article  CAS  Google Scholar 

  45. J.C. Arnault (ed.), Nanodiamonds: Advanced Material Analysis, Properties and Applications (Elsevier, 2017). ISBN: 978-0-323-43029-6

    Google Scholar 

  46. F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996). https://doi.org/10.1016/0008-6223(96)00170-4

    Article  CAS  Google Scholar 

  47. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nature Nanotech. 7, 11–23 (2012). https://doi.org/10.1038/NNANO.2011.209

    Article  CAS  Google Scholar 

  48. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-Made Diamonds. Nature 176, 51–55 (1955). https://doi.org/10.1038/176051a0

    Article  CAS  Google Scholar 

  49. J.C. Angus, C.C. Hayman, Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241, 913–921 (1988). https://doi.org/10.1126/science.241.4868.913

    Article  CAS  Google Scholar 

  50. G.W. Yang, J.B. Wang, Q.X. Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys.: Condens. Matter 10, 7923–7928 (1998). https://doi.org/10.1088/0953-8984/10/35/024

    Article  CAS  Google Scholar 

  51. J. Sun, S.L. Hu, X.W. Du, Y.W. Lei, Ultrafine diamond synthesized by long-pulse-width laser. Appl. Phys. Lett. 89, 183115 (2006). https://doi.org/10.1063/1.2385210

    Article  CAS  Google Scholar 

  52. J.P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet, High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009). https://doi.org/10.1088/0957-4484/20/35/359801

    Article  Google Scholar 

  53. J.P. Boudou, J. Tisler, R. Reuter, A. Thorel, P.A. Curmi, F. Jelezko, J. Wrachtrup, Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam. Relat. Mater. 37, 80–86 (2013). https://doi.org/10.1016/j.diamond.2013.05.006

    Article  CAS  Google Scholar 

  54. E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, C. Becher, Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl. Phys. Lett. 98, 243107 (2011). https://doi.org/10.1063/1.3599608

    Article  CAS  Google Scholar 

  55. S. Heyer, W. Janssen, S. Turner, Y.G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757 (2014). https://doi.org/10.1021/nn500573x

    Article  CAS  Google Scholar 

  56. V. Danilenko, O. Shenderova, Advances in synthesis of nanodiamond particles, in Ultrananocrystalline Diamond: synthesis, properties and applications, 2nd edn., by O. Shenderova, D.M. Gruen (Elsevier, 2012)

    Google Scholar 

  57. V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76, 339–360 (2007) (WOS:000247118100004)

    Google Scholar 

  58. O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, T. Turner, G. Van Tendeloo, Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115, 9827–9837 (2011). https://doi.org/10.1021/jp1102466

    Article  CAS  Google Scholar 

  59. B. Zousman, O. Levinson, Pure nanodiamonds produced by laser-assisted technique, in RSC Nanoscience and Nanotechnology, vol. 31, ed. by O.A. Williams (2014), pp. 112–127

    Google Scholar 

  60. J.E. Dahl, S.G. Liu, R.M.K. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–102 (2003). https://doi.org/10.1126/science.1078239

    Article  CAS  Google Scholar 

  61. O.O. Mykhaylyk, Y.M. Solonin, D.N. Batchelder, R. Brydson, Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy. J. Appl. Phys. 97, 074302 (2005). https://doi.org/10.1063/1.1868054

    Article  CAS  Google Scholar 

  62. E. Osawa, D. Ho, Nanodiamond and its application to drug delivery. J. Med. Allied. Sci. 2, 31–40 (2012) (P r i n t I S S N: 2 2 3 1 1 6 9 6 O n l i n e I S S N: 2 2 3 1 1 7 0 X)

    Google Scholar 

  63. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007). https://doi.org/10.1039/b710189a

    Article  CAS  Google Scholar 

  64. S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19, 2116–2124 (2009)

    Article  CAS  Google Scholar 

  65. D.C. Bell, C.J. Russo, D.V. Kolmykov, 40 keV atomic resolution TEM. Ultramicroscopy 114, 38–45 (2012). https://doi.org/10.1016/j.ultramic.2011.12.001

    Article  CAS  Google Scholar 

  66. B. Palosz, S. Stelmakh, E. Grzanka, S. Gierlotka, W. Palosz, Application of apparent lattice parameter to determination of core-shell structure of nanocrystals. Z. Kristallogr. 222, 580–594 (2007). https://doi.org/10.1524/zkri.2007.222.11.580

    Article  CAS  Google Scholar 

  67. V.L. Kuznetsov, M.N. Aleksandrov, I.V. Zagoruiko, A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk, V.A. Lizholobov, P.M. Brylyakov, G.V. Sakovitch, Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29, 665–668 (1991). https://doi.org/10.1016/0008-6223(91)90135-6

    Article  CAS  Google Scholar 

  68. T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, P. Bergonzo, Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B 84, 233407 (2011). https://doi.org/10.1103/PhysRevB.84.233407

    Article  CAS  Google Scholar 

  69. J.C. Arnault, X-ray photoemission spectroscopy applied to nanodiamonds: From surface chemistry to in situ reactivity Diam. Relat. Mater. 84, 157–168 (2018) https://doi.org/10.1016/j.diamond.2018.03.015

  70. D. Ballutaud, F. Jomard, T. Kociniewski, E. Rzepka, H.A. Girard, S. Saada, Sp(3)/sp(2) character of the carbon and hydrogen configuration in micro- and nanocrystalline diamond Diam. Relat. Mater. 17, 451–456 (2008). https://doi.org/10.1016/j.diamond.2007.10.004

    Article  CAS  Google Scholar 

  71. B.R. Smith, D. Inglis, B. Sandnes, J. Rabeau, A.V. Zvyagin, D. Gruber, C.J. Noble, R. Vogel, E. Osawa, T. Plakhotnik, Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5, 1649–1653 (2009). https://doi.org/10.1002/smll.200801802

    Article  CAS  Google Scholar 

  72. A.V. Fionov, A. Lund, W.M. Chen, N.N. Rozhkova, I.A. Buyanova, G.I. Emel’yanova, L.E. Gorlenko, E.V. Golubina, E.S. Lokteva, E. Osawa, V.V. Lunin, Paramagnetic centers in detonation nanodiamonds studied by CW and pulse EPR. Chem. Phys. Lett. 493, 319–322 (2010). https://doi.org/10.1016/j.cplett.2010.05.050

  73. J.H.N. Loubser, J.A. Van Wyk, Electron spin resonance in the study of diamond. Rep. Progr. Phys. 41, 1201–1248 (1978). https://doi.org/10.1088/0034-4885/41/8/002

    Article  CAS  Google Scholar 

  74. V. Pichot, O. Stephan, M. Comet, E. Fousson, J. Mory, K. March, D. Spitzer, High nitrogen doping of detonation nanodiamonds. J. Phys. Chem. C 114, 10082–10087 (2010). https://doi.org/10.1021/jp9121485

    Article  CAS  Google Scholar 

  75. Y.G. Lu, S. Turner, J. Verbeeck, S.D. Janssens, P. Wagner, K. Haenen, G. Van Tendeloo, Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains. Appl. Phys. Letters 101, 041907 (2012). https://doi.org/10.1063/1.4738885

    Article  CAS  Google Scholar 

  76. S. Turner, Y.G. Lu, S.D. Janssens, F. Da Pieve, D. Lamoen, J. Verbeeck, K. Haenen, P. Wagner, G. Van Tendeloo, Local boron environment in B-doped nanocrystalline diamond films. Nanoscale 4, 5960–5964 (2012). https://doi.org/10.1039/c2nr31530k

    Article  CAS  Google Scholar 

  77. A.V. Kvit, V.V. Zhirnov, T. Tyler, J.J. Hren, Aging effect and nitrogen distribution in diamond nanoparticles. Comput. Part B Eng. 35, 163–166 (2004). https://doi.org/10.1016/j.compositesb.2003.08.003

    Article  CAS  Google Scholar 

  78. I.I. Vlasov, Hydrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19, 4058–4062 (2007). https://doi.org/10.1002/adma.200700442

    Article  CAS  Google Scholar 

  79. O.A. Shenderova, I.I. Vlasov, S. Turner, G. Van Tendeloo, S.B. Orlinskii, A.A. Shiryaev, A.A. Khomich, S.N. Sulyanov, F. Jelezko, J. Wrachtrup, Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis. J. Phys. Chem. C 115, 14014–14024 (2011). https://doi.org/10.1021/jp202057q

    Article  CAS  Google Scholar 

  80. T. Berg, E. Marosits, J. Maul, P. Nagel, U. Ott, F. Schertz, S. Schuppler, C. Sudek, G. Schonhense, Quantum confinement observed in the x-ray absorption spectrum of size distributed meteoritic nanodiamonds. J. Appl. Phys. 104, 064303 (2008). https://doi.org/10.1063/1.2978217

    Article  CAS  Google Scholar 

  81. A.M. Panich, Nuclear magnetic resonance studies of nanodiamonds. Crit. Rev. Solid State Mater. Sci. 37, 276–303 (2012). https://doi.org/10.1080/10408436.2011.606930

    Article  CAS  Google Scholar 

  82. P.N. Nesterenko, D. Mitev, B. Paull, Elemental analysis of nanodiamonds by inductively coupled plasma hyphenated methods, in Nanodiamonds: Advanced Material Analysis, Properties and Applications, ed. by J.C. Arnault (Elsevier, 2017). ISBN: 978-0-323-43029-6

    Google Scholar 

  83. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotech. 5, 345–349 (2010). https://doi.org/10.1038/NNANO.2010.56

    Article  CAS  Google Scholar 

  84. A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A. Ya, A. Vul, E. Osawa, Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43, 1722–1730 (2005). https://doi.org/10.1016/j.carbon.2005.02.020

    Article  CAS  Google Scholar 

  85. J.C. Arnault, T. Petit, H.A. Girard, A. Chavanne, C. Gesset, M. Sennour, M. Chaigneau, Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma. Phys. Chem. Chem. Phys. 13, 11481 (2011). https://doi.org/10.1039/c1cp20109c

    Article  CAS  Google Scholar 

  86. M. Mermoux, B. Marcus, G.M. Swain, J.E. Butler, A confocal raman imaging study of an optically transparent boron-doped diamond electrode. J. Phys. Chem. B 106, 10816–10827 (2002). https://doi.org/10.1021/jp0202946

    Article  CAS  Google Scholar 

  87. S. Osswald, V.N. Mochalin, M. Havel, G. Yushin, Y. Gogotsi, Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80, 075419 (2009). https://doi.org/10.1103/PhysRevB.80.075419

    Article  CAS  Google Scholar 

  88. M. Mermoux, A. Crisci, T. Petit, H.A. Girard, J.C. Arnault, Surface modifications of detonation nanodiamonds probed by multiwavelength Raman spectroscopy. J. Phys. Chem. C 118, 23415–23425 (2014). https://doi.org/10.1021/jp507377z

    Article  CAS  Google Scholar 

  89. D.R. Baer, M.H. Engelhard, XPS analysis of nanostructured materials and biological surfaces. J. Electron Spectrosc. Relat. Phenom. 178–179: 415–432 (2010). https://doi.org/10.1016/j.elspec.2009.09.003

  90. T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, T.Y. Kang, C.L. Cheng, P. Bergonzo, Oxygen hole doping of nanodiamond. Nanoscale 4, 6792 (2012). https://doi.org/10.1039/c2nr31655b

    Article  CAS  Google Scholar 

  91. S. Michaelson, A. Stacey, R. Akhvlediani, S. Prawer, A. Hoffman, High resolution electron energy loss spectroscopy surface studies of hydrogenated detonation nano-diamond spray-deposited films. Surf. Sci. 604, 1326–1330 (2010). https://doi.org/10.1016/j.susc.2010.04.022

    Article  CAS  Google Scholar 

  92. S.L.Y. Chang, C. Dwyer, E. Osawa, A.S. Barnard, Size dependent reconstruction in detonation nanodiamonds. Nanoscale Horizons (2017). https://doi.org/10.1039/c7nh00125h

  93. T Petit, L Puskar, FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. 89, 52–66. https://doi.org/10.1016/j.diamond.2018.08.005

  94. C.L. Cheng, C.F. Chen, W.C. Shaio, D.S. Tsai, K.H. Chen, The CH stretching features on diamonds of different origins. Diam. Relat. Mater. 14, 1455–1462 (2005). https://doi.org/10.1016/j.diamond.2005.03.003

    Article  CAS  Google Scholar 

  95. P.H. Chung, E. Perevedentseva, J.S. Tu, C.C. Chang, C.L. Cheng, Spectroscopic study of bio-functionalized nanodiamonds. Diam. Relat. Mater. 15, 622–625 (2006). https://doi.org/10.1016/j.diamond.2005.11.019

    Article  CAS  Google Scholar 

  96. Z. Remes, H. Kozak, B. Rezek, E. Ukraintsev, O. Babchenko, A. Kromka, H.A. Girard, J.C. Arnault, P. Bergonzo, Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles. Appl. Surf. Sci. 270, 411–417 (2013). https://doi.org/10.1016/j.apsusc.2013.01.039

    Article  CAS  Google Scholar 

  97. S. Ghodbane, A. Deneuville, D. Tromson, P. Bergonzo, E. Bustarret, D. Ballutaud, Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films. Phys. Status Solidi (a) 203, 2397–2402 (2006). https://doi.org/10.1002/pssa.200521462

  98. A. Crisci, M. Mermoux, B. Saubat-Marcus, Deep ultra-violet Raman imaging of CVD boron-doped and non-doped diamond films. Diam. Relat. Mater. 17, 1207–1211 (2008). https://doi.org/10.1016/j.diamond.2008.01.025

    Article  CAS  Google Scholar 

  99. F. Cataldo, A. Koscheev, A study of the action of ozone and on the thermal stability of nanodiamond. Fuller. Nanotub. Carbon Nanostructures 11, 201 (2003). https://doi.org/10.1081/FST-120024039

    Article  CAS  Google Scholar 

  100. A. Koshcheev, Thermodesorption mass spectrometry in the light of solution of the problem of certification and unification of the surface properties of detonation nano-diamonds. Russ. J. Gener. Chem. 79, 2033–2044 (2009). https://doi.org/10.1134/S1070363209090357

    Article  CAS  Google Scholar 

  101. A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu, Deagglomeration and functionalisation of detonation diamond. Phys. Status Solidi (a) 204, 2881–2887 (2007). https://doi.org/10.1002/pssa.200776330

    Article  CAS  Google Scholar 

  102. A.E. Aleksenskiy, E.D. Eydelman, A.Y. Vul, Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68–74 (2011). https://doi.org/10.1166/nnl.2011.1122

    Article  CAS  Google Scholar 

  103. T. Petit, H.A. Girard, A. Trouve, I. Batonneau-Genner, P. Bergonzo, J.C. Arnault, Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds. Nanoscale 5, 8958–8962 (2013). https://doi.org/10.1039/c3nr02492j

    Article  CAS  Google Scholar 

  104. H.A. Girard, J.C. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.P. Boilot, P. Bergonzo, Hydrogenation of nanodiamonds using MPCVD: A new route toward organic functionalization. Diam. Relat. Mater. 19, 1117–1123 (2010). https://doi.org/10.1016/j.diamond.2010.03.019

    Article  CAS  Google Scholar 

  105. O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS Nano 4, 4824–4830 (2010). https://doi.org/10.1021/nn100748k

    Article  CAS  Google Scholar 

  106. A.I. Ahmed, S. Mandal, L. Gines, O.A. Williams, C.L. Cheng, Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110, 438–442 (2016). https://doi.org/10.1016/j.carbon.2016.09.019

    Article  CAS  Google Scholar 

  107. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006). https://doi.org/10.1021/ja063303n

    Article  CAS  Google Scholar 

  108. A. Krueger, The structure and reactivity of nanoscale diamond. J. Mater. Chem. 18, 1485–1492 (2008). https://doi.org/10.1039/b716673g

  109. A. Krüger, Y. Liang, G. Jarre, J. Stegk, Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16, 2322–2328 (2006). https://doi.org/10.1039/b601325b

    Article  CAS  Google Scholar 

  110. R. Martin, P.C. Heydorn, M. Alvaro, H. Garcia, General strategy for high-density covalent functionalization of diamond nanoparticles using fenton chemistry. Chem. Mater. 21, 4505–4514 (2009). https://doi.org/10.1021/cm9012602

    Article  CAS  Google Scholar 

  111. H.A. Girard, T. Petit, S. Perruchas, J.C. Arnault, P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys. Chem. Chem. Phys. 13, 11511–11516 (2011). https://doi.org/10.1039/c1cp20424f

    Article  CAS  Google Scholar 

  112. V.N. Mochalin, S. Osswald, C. Portet, G. Yushin, C. Hobson, M. Havel, Gogotsi Y high temperature functionalization and surface modification of nanodiamond powders. MRS Proc. 1039, 201–211 (2007). https://doi.org/10.1557/PROC-1039-P11-03

    Article  Google Scholar 

  113. M.A. Ray, T. Tyler, B. Hook, A. Martin, G. Cunningham, O. Shenderova, J.L. Davidson, M. Howell, W.P. Kang, G. McGuire, Cool plasma functionalization of nano-crystalline diamond films. Diam. Relat. Mater. 16, 2087–2089 (2007). https://doi.org/10.1016/j.diamond.2007.07.016

    Article  CAS  Google Scholar 

  114. J. Havlik, H. Raabova, M. Gulka, V. Petrakova, M. Krecmarova, V. Masek, P. Lousa, J. Stursa, G. BoyenH, M. Nesladek, P. Cigler, Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv. Funct. Mater. 26, 4134–4142 (2017). https://doi.org/10.1002/adfm.201504857

    Article  CAS  Google Scholar 

  115. K.I. Sotowa, T. Amamoto, A. Sobana, K. Kusakabe, T. Imato, Effect of treatment temperature on the amination of chlorinated diamond. Diam. Relat. Mater. 13, 145–150 (2004). https://doi.org/10.1016/j.diamond.2003.10.029

    Article  CAS  Google Scholar 

  116. W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25, 185–191 (2009). https://doi.org/10.1021/la8029787

    Article  CAS  Google Scholar 

  117. L.C.L. Huang, H.C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20, 5879–5884 (2004). https://doi.org/10.1021/la0495736

    Article  CAS  Google Scholar 

  118. Y. Liang, T. Meinhardt, G. Jarre, M. Ozawa, P. Vrdoljak, A. Schöll, F. Reinert, A. Krueger, Deagglomeration and surface modification of thermally annealed nanoscale diamond. J. Colloid Interface Sci. 354, 23–30 (2011). https://doi.org/10.1016/j.jcis.2010.10.044

    Article  CAS  Google Scholar 

  119. J. Chen, S.Z. Deng, J. Chen, Z.X. Yu, N.S. Xu, Graphitization of nanodiamond powder annealed in argon ambient. Appl. Phys. Lett. 74, 3651 (1999). https://doi.org/10.1063/1.123211

    Article  CAS  Google Scholar 

  120. Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009). https://doi.org/10.1021/nn900339s

    Article  CAS  Google Scholar 

  121. J.B. Cui, J. Ristein, L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429–432 (1998). https://doi.org/10.1103/PhysRevLett.81.429

    Article  CAS  Google Scholar 

  122. L. Ley, J. Ristein, F. Meier, M. Riedel, P. Strobel, Surface conductivity of the diamond: a novel transfer doping mechanism. Phys. B 376, 262–267 (2006). https://doi.org/10.1016/j.physb.2005.12.068

  123. J.C. Arnault, H.A. Girard, Hydrogenated nanodiamonds: synthesis and surface properties Curr. Opin. Solid State Mater. Sci. 21, 10–16 (2017). https://doi.org/10.1016/j.cossms.2016.06.007

    Article  CAS  Google Scholar 

  124. B.V. Spitsyn, S.A. Denisov, N.A. Skorik, A.G. Chopurova, S.A. Parkaeva, L.D. Belyakova, O.G. Larionov, The physical-chemical study of detonation nanodiamond application in adsorption and chromatography. Diam. Relat. Mater. 19, 123–127 (2010). https://doi.org/10.1016/j.diamond.2009.10.020

    Article  CAS  Google Scholar 

  125. S. Ida, T. Tsubota, O. Hirabayashi, M. Nagata, Y. Matsumoto, A. Fujishima, Chemical reaction of hydrogenated diamond surface with peroxide radical initiators. Diam. Relat. Mater. 12, 601–605 (2003). https://doi.org/10.1016/S0925-9635(02)00334-5

    Article  CAS  Google Scholar 

  126. I.I. Obraztsova, N.K. Eremenko, Physicochemical modification of nanodiamonds. Russ. J. Appl. Chem. 81, 603–608 (2008). https://doi.org/10.1134/S107042720804006X

    Article  CAS  Google Scholar 

  127. M.B. Smith, J. March, March’s Advanced Organic Chemistry, 6th edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  128. D Ager, Hydrogenation of carbon-carbon double bonds in Science of Synthesis, Stereoselective Synthesis, vol. 1 ed. by J.G. De Vries, G.A. Molander, P.A. Evans (2011), pp. 185–256

    Google Scholar 

  129. M. Yeganeh, P. Coxon, A. Brieva, V. Dhanak, L. Šiller, Y. Butenko, Atomic hydrogen treatment of nanodiamond powder studied with photoemission spectroscopy. Phys. Rev. B 75, 1–8 (2007). https://doi.org/10.1103/PhysRevB.75.155404

    Article  CAS  Google Scholar 

  130. J. Angus, H.A. Will, W.S. Stanko, Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915–2922 (1968). https://doi.org/10.1063/1.1656693

    Article  CAS  Google Scholar 

  131. E. Van Hove, J. De Sanoit, J.C. Arnault, S. Saada, C. Mer, P. Mailley, P. Bergonzo, M. Nesladek, Stability of H-terminated BDD electrodes: an insight into the influence of the surface preparation. Phys. Status Solidi (a) 204, 2931–2939 (2007). https://doi.org/10.1002/pssa.200776340

    Article  CAS  Google Scholar 

  132. R. Kiran, E. Scorsone, J. De Sanoit, J.C. Arnault, P. Mailley, P. Bergonzo, Boron doped diamond electrodes for direct measurement in biological fluids: an in situ regeneration approach. J. Electrochem. Soc. 160, H67–H73 (2013). https://doi.org/10.1149/2.014302jes

    Article  CAS  Google Scholar 

  133. W.S. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell, L.M. Smith, R.J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1, 253–257 (2002). https://doi.org/10.1038/nmat779

    Article  CAS  Google Scholar 

  134. T. Strother, T. Knickerbocker, J. Russell, J. Butler, L. Smith, R. Hamers, Photochemical functionalization of diamond films. Langmuir 18, 968–971 (2002). https://doi.org/10.1021/la0112561

    Article  CAS  Google Scholar 

  135. A. Hartl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmuller, M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 3, 736–742 (2004). https://doi.org/10.1038/nmat1204

    Article  CAS  Google Scholar 

  136. Y. Zhong, K. Loh, The chemistry of C-H bond activation on diamond. Chem.–Asian J. 5, 1532–1540 (2010). https://doi.org/10.1002/asia.201000027

  137. S. Szunerits, R. Boukherroub, Different strategies for functionalization of diamond surfaces. J. Solid State Electrochem. 12, 1205–1218 (2008). https://doi.org/10.1007/s10008-007-0473-3

    Article  CAS  Google Scholar 

  138. F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472–3475 (2000). https://doi.org/10.1103/PhysRevLett.85.3472

    Article  CAS  Google Scholar 

  139. C. Bandis, B.B. Pate, electron-emission due to exciton breakup from negative electron-affinity diamond. Phys. Rev. Lett. 74, 777–780 (1995). https://doi.org/10.1103/PhysRevLett.74.777

    Article  CAS  Google Scholar 

  140. B.M. Nichols, J.E. Butler, J.N. Russell, R.J. Hamers, Photochemical functionalization of hydrogen-terminated diamond surfaces: a structural and mechanistic study. J. Phys. Chem. B 109, 20938–20947 (2005). https://doi.org/10.1021/jp0545389

    Article  CAS  Google Scholar 

  141. D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe, T. Nakamura, T. Yamamoto, C.E. Nebel, Photo- and electrochemical bonding of DNA to single crystalline CVD diamond. Phys. Status Solidi A 203, 3245–3272 (2006). https://doi.org/10.1002/pssa.200671402

    Article  CAS  Google Scholar 

  142. S. Lud, M. Steenackers, R. Jordan, P. Bruno, D. Gruen, P. Feulner, J. Garrido, M. Stutzmann, Chemical grafting of biphenyl self-assembled monolayers on ultrananocrystalline diamond. J. Am. Chem. Soc. 128, 16884–16891 (2006). https://doi.org/10.1021/ja0657049

    Article  CAS  Google Scholar 

  143. A. Bolker, C. Saguy, R. Kalish, Transfer doping of single isolated nanodiamonds, studied by scanning probe micros copy techniques. Nanotechnology 25(385702), 1–7 (2014). https://doi.org/10.1088/0957-4484/25/38/385702

    Article  CAS  Google Scholar 

  144. Y.V. Butenko, V.L. Kuznetsov, E.A. Paukshtis, A.I. Stadnichenko, I.N. Mazov, S.I. Moseenkov, A.I. Boronin, S.V. Kosheev, The thermal stability of nanodiamond surface groups and onset of nanodiamond graphitization. Fuller. Nanotub. Carbon Nanostructures 14, 557–564 (2006). https://doi.org/10.1080/15363830600666779

    Article  CAS  Google Scholar 

  145. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.C. Chang, V. Jacques, J.F. Roch, Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010). https://doi.org/10.1103/PhysRevB.82.115449

    Article  CAS  Google Scholar 

  146. O. Shenderova, I. Petrov, J. Walsh, V. Grichko, T. Tyler, G. Cunningham, Modification of detonation nanodiamonds by heat treatment in air. Diam. Relat. Mater. 15, 1799–1803 (2006). https://doi.org/10.1016/j.diamond.2006.08.032

    Article  CAS  Google Scholar 

  147. D. Mitev, R. Dimitrova, M. Spassova, C. Minchev, S. Stavrev, Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods. Diam. Relat. Mater. 16, 776–780 (2007). https://doi.org/10.1016/j.diamond.2007.01.005

    Article  CAS  Google Scholar 

  148. M. Comet, V. Pichot, B. Siegert, F. Britz, D. Spitzer, Detonation Nanodiamonds for Doping Kevlar. J. Nanosci. Nanotechnol. 10, 4286–4292 (2010). https://doi.org/10.1166/jnn.2010.2186

    Article  CAS  Google Scholar 

  149. O. Shenderova, A.M. Panich, S. Moseenkov, S.C. Hens, V. Kuznetsov, H.M. Vieth, Hydroxylated detonation nanodiamond : FTIR, XPS, and NMR studies. J. Phys. Chem. C 115, 19005–19011 (2011). https://doi.org/10.1021/jp205389m

    Article  CAS  Google Scholar 

  150. R. Martín, M. Álvaro, J.R. Herance, H. García, Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano 4, 65–74 (2010). https://doi.org/10.1021/nn901616c

    Article  CAS  Google Scholar 

  151. Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16, 3924–3930 (2004). https://doi.org/10.1021/cm048875q

    Article  CAS  Google Scholar 

  152. G. Lisichkin, V. Korol’kov, B. Tarasevic, I. Kulakova, A. Karpukhin, Photochemical chlorination of nanodiamond and interaction of its modified surface with C-nucleophiles. Russ. Chem. Bull. 55, 2212–2219 (2006). https://doi.org/10.1007/s11172-006-0574-7

  153. B.V. Spitsyn, J.L. Davidson, M.N. Graboboev, T.B. Galushko, N.V. Serebryakova, T.A. Karpukhina, I.I. Kulakova, N.N. Melnik, In road to modifications of detonation nanodiamond. Diam. Relat. Mater. 15, 296–299 (2006). https://doi.org/10.1016/j.diamond.2005.07.033

    Article  CAS  Google Scholar 

  154. V. Ralchenko, L. Nistor, E. Pleuler, A. Khomich, I. Vlasov, R. Khmelnitskii, Structure and properties of high-temperature annealed CVD diamond. Diam. Relat. Mater. 12, 1964–1970 (2003). https://doi.org/10.1016/S0925-9635(03)00214-0

    Article  CAS  Google Scholar 

  155. S. Ogawa, T. Yamada, S. Ishizduka, A. Yoshigoe, M. Hasegawa, Y. Teraoka, Y. Takakuwa, Vacuum annealing formation of graphene on diamond C(111) surfaces studied by real-time photoelectron spectroscopy. Jap. J. Appl. Phys. 51, 11PF02 (2012). https://doi.org/10.1143/jjap.51.11pf02

  156. T. Evans, Changes produced by high temperature treatment of diamond, in The Properties of Natural and Synthetic Diamonds, ed. by J.E. Field (Academic Press, London, 1979), pp. 403–425

    Google Scholar 

  157. K.S. Uspenskaya, Y.N. Tolmachev, D.V. Fedoseev, Oxidation and graphitization of diamond at low pressures. Zh. Fiz. Khim. 56, 495 (1982) (in Russian). WOS:A1982ND19900073

    Google Scholar 

  158. D.V. Fedoseev, S.P. Vnusov, V.L. Bukhovets, B.A. Anikin, Surface graphitization of diamond at high temperatures. Surf. Coat. Technol. 28, 207–214 (1986). https://doi.org/10.1016/0257-8972(86)90059-9

    Article  CAS  Google Scholar 

  159. G. Davies, Properties and Growth of Diamond (INSPEC, London, 1994)

    Google Scholar 

  160. J.F. Prins, Ion implantation of diamond for electronics applications. Semicond. Sci. Technol. 18, S27 (2003). https://doi.org/10.1088/0268-1242/18/3/304

    Article  CAS  Google Scholar 

  161. F. Banhart, Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999). https://doi.org/10.1088/0034-4885/62/8/201

  162. J.E. Field (ed.), The Properties of Natural and Synthetic Diamonds (Academic Press, London, 1977)

    Google Scholar 

  163. O.P. Krivoruchko, V.I. Zaikovski, K.I. Zamaraev, Formation of unsual liquid-like FeC particles and dynamics of their nehavior on amorphous carbon surface at 920–1170 K. Dkl. Akad. Nauk. 329, 744 (1993) (WOS:A1993LR07400017)

    Google Scholar 

  164. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996)

    Google Scholar 

  165. V.L. Kuznetsov, Y.V. Butenko, Diamond phase transitions at nanoscale, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, 2nd edn., ed. by O. Shenderova, D.M. Gruen (Elsevier, 2012)

    Google Scholar 

  166. Y.V. Butenko, S. Krishnamurthy, A.K. Chakraborty, V.L. Kuznetsov, V.R. Dhanak, M.R.C. Hunt, L. Scaroniller, L. Šiller, Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys. Rev. B 71, 75420 (2005). https://doi.org/10.1103/PhysRevB.71.075420

    Article  CAS  Google Scholar 

  167. D. Pech, M. Brunet, H. Durou, P.H. Huang, V. Mochalin, Y. Gogotsi, Ultra-high-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162

    Article  CAS  Google Scholar 

  168. O. Shenderova, C. Jones, V. Borjanovic, S. Hens, G. Cunningham, S. Moseenkov, Detonation nanodiamond and onion-like carbon: applications in composites. Phys. Status Solidi a 205, 2245–2251 (2008). https://doi.org/10.1002/pssa.200879706

    Article  CAS  Google Scholar 

  169. O. Shenderova, T. Tyler, V. Borjanovic, G. Cunningham, M. Ray, J. Walsh, M. Casulli, Nanodiamond and onion-like carbon polymer nanocomposites. Diam. Relat. Mater. 16, 1213–1217 (2007). https://doi.org/10.1016/S0925-9635(07)00337-8

    Article  CAS  Google Scholar 

  170. V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.L. Malkov, V.M. Titov, Onion-like carbon from ultradisperse diamond. Chem. Phys. Lett. 222, 343 (1994). https://doi.org/10.1016/0009-2614(94)87072-1

    Article  CAS  Google Scholar 

  171. F. Fugaciu, H. Hermann, G. Seifert, Concentric-shell fullerenes and diamond particles: a molecular-dynamics study. Phys. Rev. B 60, 10711 (1999). https://doi.org/10.1103/PhysRevB.60.10711

    Article  CAS  Google Scholar 

  172. J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello, Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 90, 37401 (2003). https://doi.org/10.1103/PhysRevLett.90.037401

    Article  CAS  Google Scholar 

  173. V.L. Kuznetsov, I.L. Zilberberg, Y.V. Butenko, A.L. Chuvilin, B. Segall, Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. J. Appl. Phys. 86, 863 (1999). https://doi.org/10.1063/1.370816

    Article  CAS  Google Scholar 

  174. Y.V. Butenko, V.L. Kuznetsov, A.L. Chuvilin, V.N. Kolomiichuk, S.V. Stankus, R.A. Khairulin, The kinetics of the graphitization of dispersed diamonds at low temperatures. J. Appl. Phys. 88, 4380 (2000). https://doi.org/10.1063/1.1289791

    Article  CAS  Google Scholar 

  175. G. Davies, T. Evans, Graphitization of diamond at zero temperature and a high pressure. Proc. R. Soc. 328, 413 (1972). https://doi.org/10.1098/rspa.1972.0086

    Article  CAS  Google Scholar 

  176. D.S. Su, N.I. Maksimova, G. Mestl, V.L. Kuznetsov, V. Keller, R. Schlogl, N. Keller, Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon 45, 2145–2151 (2007). https://doi.org/10.1016/j.carbon.2007.07.005

    Article  CAS  Google Scholar 

  177. K. Xu, Q. Xue, A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method. Phys. Solid State 46, 649–650 (2004). https://doi.org/10.1134/1.1711442

    Article  CAS  Google Scholar 

  178. O.E. Anderson, B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, Structure and electronic properties of graphite nanoparticles. Phys. Rev. B 58, 16387–16395 (1998)

    Article  Google Scholar 

  179. J. Qian, C. Pantea, J. Huang, T.W. Zerda, Y. Zhao, Graphitization of diamond powders of different sizes at high pressure-high temperature. Carbon 42, 2691 (2004). https://doi.org/10.1016/j.carbon.2004.06.017

    Article  CAS  Google Scholar 

  180. J. Cebik, J.K. McDonough, F. Peerally, R. Medrano, I. Neitzel, Y. Gogotsi, S. Osswald, Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology 24, 205703 (2013). https://doi.org/10.1088/0957-4484/24/20/205703

    Article  CAS  Google Scholar 

  181. A. Panich, A.I. Shames, N.A. Sergeev, M. Olszewski, J.K. McDonough, V.N. Mochalin, Y. Gogotsi, Nanodiamond graphitization: a magnetic resonance study. J. Phys.: Condens. Matter 25, 245303 (2013). https://doi.org/10.1088/0953-8984/25/24/245303

    Article  CAS  Google Scholar 

  182. Z. Markovic, V. Trajkovic, Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29, 3561–3573 (2008). https://doi.org/10.1016/j.biomaterials.2008.05.005 (ref 156)

  183. K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33, 2206–2214 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.064 (ref 157)

  184. C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45: 2511–2518 (2007). https://doi.org/10.1016/j.carbon.2007.08.024 (ref 158)

  185. J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, S. Ren, X. Qu, Surface modification and electrochemical behaviour of undoped Nanodiamonds. Electrochem. Acta 72, 68–73 (2012). https://doi.org/10.1016/j.electacta.2012.03.169 (ref 159)

  186. G. Su, H. Zhou, Q. Mu, Y. Zhang, L. Li, P. Jiao, G. Jiang, B. Yan, Effective surface charge density determines the electrostatic attraction between nanoparticles and cells. J. Phys. Chem. C 116, 4993–4998 (2012). https://doi.org/10.1021/jp211041m

    Article  CAS  Google Scholar 

  187. Y.Y. Liu, H. Miyoshi, M. Nakamura, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007). https://doi.org/10.1002/ijc.22709

  188. A.S. Barnard, Self-assembly in nanodiamond agglutinates. J. Mater Chem. 18, 4038–4041 (2008). https://doi.org/10.1039/b809188a

    Article  CAS  Google Scholar 

  189. E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, A stable suspension of single ultrananocrystalline diamond particles. Diam. Relat. Mater. 14, 1765–1769 (2005). https://doi.org/10.1016/j.diamond.2005.08.057

    Article  CAS  Google Scholar 

  190. E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16, 2018–2022 (2007). https://doi.org/10.1016/j.diamond.2007.08.008

    Article  CAS  Google Scholar 

  191. A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2, 3289–3294 (2010). https://doi.org/10.1021/am100720n (ref 165)

  192. A.T. Dideikin, A.E. Aleksenskii, M.V. Baidakova, P.N. Brunkov, M. Brzhezinskaya, V.Y. Davydov, V.S. Levitskii, S.V. Kidalov, Y.A. Kukushkina, D.A. Kirilenko, V.V. Shnitov, A.V. Shvidchenko, B. Senkovskiy, M.S. Shestakov, A.Y. Vul, Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon 122, 737–745 (2017). https://doi.org/10.1016/j.carbon.2017.07.013

    Article  CAS  Google Scholar 

  193. R.J. Hunter, Zeta Potential in Colloids Science (Academic Press, NY, 1981)

    Google Scholar 

  194. T.M. Riddick, Zeta-Meter Operating Manual zm-75 (Zeta-Meter Inc., New York, 1968)

    Google Scholar 

  195. A.V. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena (IUPAC Technical Report). Pure Appl. Chem. 77, 1753–1805 (2005). https://doi.org/10.1351/pac200577101753

    Article  CAS  Google Scholar 

  196. M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Krueger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). https://doi.org/10.1002/adma.200601452

    Article  CAS  Google Scholar 

  197. T. Petit, M. Pflüger, D. Tolksdorf, J. Xiao, E.F. Aziz, Valence holes observed in nanodiamonds dispersed in water. Nanoscale 7, 2987–2991 (2015). https://doi.org/10.1039/C4NR06639A

    Article  CAS  Google Scholar 

  198. T. Petit, H. Yuzawa, M. Nagasaka, R. Yamanoi, E. Osawa, N. Kosugi, E.F. Aziz, Probing interfacial water on nanodiamonds in colloidal dispersion. J. Phys. Chem. Lett. 6, 2909–2912 (2015). https://doi.org/10.1021/acs.jpclett.5b00820

    Article  CAS  Google Scholar 

  199. V.N. Mochalin, I. Neitzel, B. Etzold, A.M. Peterson, G. Palmese, Y. Gogotsi, Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 9, 7494–7502 (2011). https://doi.org/10.1021/nn2024539

    Article  CAS  Google Scholar 

  200. Y. Morita, T. Takimoto, H. Yamanaka, K. Kumekawa, S. Morino, S. Aonuma, T. Kimura, N. Komatsu, A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm. Small 4, 2154–2157 (2008). https://doi.org/10.1002/smll.200800944

    Article  CAS  Google Scholar 

  201. N. Gibson, O. Shenderova, T.J.M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D.W. Brenner, Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater. 18, 620–626 (2009). https://doi.org/10.1016/j.diamond.2008.10.049

    Article  CAS  Google Scholar 

  202. K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima, Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327–333 (2008). https://doi.org/10.1021/nn700151z

    Article  CAS  Google Scholar 

  203. Y.F. Li, C.I. Hung, C.C. Li, W. Chin, B.Y. Wei, W.K. Hsu, A gas-phase hydrophilization of carbon nanotubes by xenon excimer ultraviolet irradiation. J. Mater. Chem. 19, 6761 (2009). https://doi.org/10.1039/b905995d

    Article  CAS  Google Scholar 

  204. L. Pospíšil, M. Gál, M. Hromadová, J. Bulícková, V. Kolivoška, J. Cvacka, K. Nováková, L. Kavan, M. Zukalová, L. Dunsch, Search for the form of fullerene C(60) in aqueous medium. Phys. Chem. Chem. Phys. 12, 14095–14101 (2010). https://doi.org/10.1039/c0cp00986e

    Article  CAS  Google Scholar 

  205. H.A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille, J.C. Arnault, P. Bergonzo, J.P. Boilot, T. Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces 1, 2738–2746 (2009). https://doi.org/10.1021/am900458g

    Article  CAS  Google Scholar 

  206. J. Hees, A. Kriele, O.A. Williams, Electrostatic self-assembly of diamond nanoparticles. Chem. Phys. Lett. 509, 12–15 (2011). https://doi.org/10.1016/j.cplett.2011.04.083

    Article  CAS  Google Scholar 

  207. C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond n organic solvents. Coll. Surf. Physicochem. Eng. Asp. 353, 52–56 (2010). https://doi.org/10.1016/j.colsurfa.2009.10.019

    Article  CAS  Google Scholar 

  208. A.I. Shames, A.M. Panich, V.Y. Osipov, A.E. Aleksenskiy, A.Y. Vul’, T. Enoki, K. Takai, Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107, 014318 (2010). https://doi.org/10.1063/1.3273486

  209. C. Gaillard, H.A. Girard, C. Falck, V. Paget, V. Simic, N. Ugolin, P. Bergonzo, S. Chevillard, J.C. Arnault, RSC Adv. (2013) https://doi.org/10.1039/c3ra45158e

  210. M.A. Montes-Moran, D. Suarez, J.A. Menendez, E. Fuente, On the nature of basic sites on carbon surfaces: an overview. Carbon 42, 1219–1225 (2004). https://doi.org/10.1016/j.carbon.2004.01.023

    Article  CAS  Google Scholar 

  211. C. Leon, J.M. Solar, V. Calemma, L.R. Radovic, Evidence for the protonation of basal-plane sites on carbon. Carbon 30, 797–811 (1992). https://doi.org/10.1016/0008-6223(92)90164-R

    Article  Google Scholar 

  212. V.L. Kuznetsov, Y.V. Butenko, A.L. Chuvilin, A.I. Romanenko, A.V. Okotrub, Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem. Phys. Lett. 336, 397–404 (2001). https://doi.org/10.1016/S0009-2614(01)00135-X

    Article  CAS  Google Scholar 

  213. S. Biniak, G. Szymanski, J. Siedlewskia, A. Swiatkowskib, The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810 (1997). https://doi.org/10.1016/S0008-6223(97)00096-1

    Article  CAS  Google Scholar 

  214. A. Krueger, J. Stegk, Y.J. Liang, L. Lu, G. Jarre, Biotinylated nanodiamond: Simple and efficient functionalization of detonation diamond. Langmuir 24, 4200–4204 (2008). https://doi.org/10.1021/la703482v

    Article  CAS  Google Scholar 

  215. E. Fuente, J.A. Menendez, D. Suarez, M.A. Montes-Moran, Basic surface oxides on carbon materials: a global view. Langmuir 19, 3505–3511 (2003). https://doi.org/10.1021/la026778a

    Article  CAS  Google Scholar 

  216. V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424–1430 (2007). https://doi.org/10.1126/science.1148841

    Article  CAS  Google Scholar 

  217. T. Kondo, I. Neitzel, V.N. Mochalin, J. Urai, M. Yuasa, Y. Gogotsi, Electrical conductivity of thermally hydrogenated nanodiamond powders. J. Appl. Phys. 113, 214307 (2013). https://doi.org/10.1063/1.4809549

    Article  CAS  Google Scholar 

  218. S. Stehlik, T. Glatzel, V. Pichot, R. Pawlak, E. Meyer, D. Spitzer, B. Rezek, Water interaction with hydrogenated and oxidized detonation nanodiamonds - microscopic and spectroscopic analyses. Diam. Relat. Mater. 63, 97–102 (2015). https://doi.org/10.1016/j.diamond.2015.08.016

    Article  CAS  Google Scholar 

  219. T. Petit, L. Puskar, T. Dolenko, S. Choudhury, E. Ritter, S. Burikov, K. Laptinskiy, Q. Brzustowski, U. Schade, H. Yuzawa, N. Nagasaka, N. Kosugi, M. Kurzyp, A. Venerosy, H.A. Girard, J.C. Arnault, E. Osawa, N. Nunn, O. Shenderova, E.F. Aziz, Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. J. Phys. Chem. C 121, 5185–5194 (2017). https://doi.org/10.1021/acs.jpcc.7b00721

    Article  CAS  Google Scholar 

  220. K.K. Liu, C.C. Wang, C.L. Cheng, J.I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30, 4249–4259 (2009). https://doi.org/10.1016/j.biomaterials.2009.04.056

    Article  CAS  Google Scholar 

  221. Y. Yuan, X. Wang, G. Jia, J.H. Liu, T. Wang, Y. Gu, S.T. Yang, S. Zhen, H. Wang, Y. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice. Diam. Relat. Mater. 19, 291–299 (2009). https://doi.org/10.1016/j.diamond.2009.11.022

  222. N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010). https://doi.org/10.1021/nl1021909

    Article  CAS  Google Scholar 

  223. V. Vaijayanthimala, P.Y. Cheng, S.H. Yeh, K.K. Liu, C.H. Hsiao, J.I. Chao, H.C. Chang, The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33, 7794–7802 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.084

    Article  CAS  Google Scholar 

  224. S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605 (2005). https://doi.org/10.1021/ja0567081

  225. Y. Xing, W. Xiong, L. Zhu, E. Osawa, S. Hussin, L. Dai, DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano 5, 2376–2384 (2011). https://doi.org/10.1021/nn200279k

  226. J.A. Sergent, V. Paget, S. Chevillard, Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann. Occup. Hyg. 56, 622–630 (2012). https://doi.org/10.1093/annhyg/mes005

  227. L.J. Mah, A. El-Osta, T.C. Karagiannis, gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679–686 (2010). https://doi.org/10.1038/leu.2010.6

  228. L. Moore, B. Grobarova, E. Shen, H.B. Man, J. Mıcova, M. Ledvina, J. Stursa, M. Nesladek, A. Fiserova, D. Ho, Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized Nanodiamonds 6, 11712–11721 (2014). https://doi.org/10.1039/c4nr02570a

  229. C. Sicard-Roselli, E. Brun, M. Gilles, G. Baldacchino, C. Kelsey, H. McQuaid, C. Polin, N. Wardlow, F. Currell, A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small 10, 3338–3346 (2014). https://doi.org/10.1002/smll.201400110

    Article  CAS  Google Scholar 

  230. A.M. Schrand, J.B. Lin, S.C. Hens, S.M. Hussain, Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3, 435–445 (2011). https://doi.org/10.1039/c0nr00408a

    Article  CAS  Google Scholar 

  231. I.P. Chang, K.C. Hwang, C.S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Am. Chem. Soc. 130, 15476–15481 (2008). https://doi.org/10.1021/ja804253y

    Article  CAS  Google Scholar 

  232. U. Maitra, A. Jain, S.J. George, C.N. Rao, Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy transfer. Nanoscale 3, 3192–3197 (2011). https://doi.org/10.1039/c1nr10295h

    Article  CAS  Google Scholar 

  233. Q. Zhang, V.N. Mochalin, I. Neitzel, I.Y. Knoke, J. Han, C.A. Klug, J.G. Zhou, P.I. Lelkes, Y. Gogotsi, Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.090

    Article  CAS  Google Scholar 

  234. X.Q. Zhang, M. Chen, R. Lam, X.Y. Xu, E. Osawa, D. Ho, Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3, 2609–2616 (2009). https://doi.org/10.1021/nn900865g

    Article  CAS  Google Scholar 

  235. H.D. Wang, Q. Yang, C.H. Niu, I. Badea, Protein-modified nanodiamond particles for Layer-by-Layer assembly. Diam. Relat. Mater. 20, 1193–1198 (2011). https://doi.org/10.1016/j.diamond.2011.06.015

    Article  CAS  Google Scholar 

  236. Y.K. Tzeng, O. Faklaris, B.M. Chang, Y. Kuo, J.H. Hsu, H.C. Chang, Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. Eng. 50, 2262–2265 (2011). https://doi.org/10.1002/anie.201007215

    Article  CAS  Google Scholar 

  237. C.Y. Cheng, E. Perevedentseva, J.S. Tu, P.H. Chung, C.L. Cheng, K.K. Liu, J.I. Chao, P.H. Chen, C.C. Chang, Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl. Phys. Lett. 90, 163903 (2007). https://doi.org/10.1063/1.2727557

    Article  CAS  Google Scholar 

  238. D.T. Tran, V. Vermeeren, L. Grieten, S. Wenmackers, P. Wagner, J. Pollet, K.P. Janssen, L. Michiels, J. Lammertyn, Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE. Biosens. Bioelectron. 26, 2987–2993 (2011). https://doi.org/10.1016/j.bios.2010.11.053

    Article  CAS  Google Scholar 

  239. A.H. Smith, E.M. Robinson, X.Q. Zhang, E.K. Chow, Y. Lin, E. Osawa, J. Xi, Ho D (2011) triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale 3, 2844 (2011). https://doi.org/10.1039/c1nr10278h

    Article  CAS  Google Scholar 

  240. A. Barras, J. Lyskawa, S. Szunerits, P. Woisel, R. Boukherroub, Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir 27, 12451–12457 (2011). https://doi.org/10.1021/la202571d

    Article  CAS  Google Scholar 

  241. R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.004

    Article  CAS  Google Scholar 

  242. E. Perevedentseva, P.J. Cai, Y.C. Chiu, C.L. Cheng, Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir 27, 1085–1091 (2011). https://doi.org/10.1021/la103155c

    Article  CAS  Google Scholar 

  243. T.T.B. Nguyen, H.C. Chang, V.W.K. Wu, Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam. Relat. Mater. 16, 872–876 (2007). https://doi.org/10.1016/j.diamond.2007.01.030

    Article  CAS  Google Scholar 

  244. V.S. Bondar, I.O. Pozdnyakova, A.P. Puzyr, Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State 46, 758–760 (2004). https://doi.org/10.1134/1.1711468

    Article  CAS  Google Scholar 

  245. R. Lam, M. Chen, E. Pierstorff, H. Huang, E. Osawa, D. Ho, Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2, 2095–2102 (2008). https://doi.org/10.1021/nn800465x

    Article  CAS  Google Scholar 

  246. H. Huang, E. Pierstorff, E. Osawa, D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007). https://doi.org/10.1021/nl071521o

    Article  CAS  Google Scholar 

  247. M. Chen, X.Q. Zhang, H.B. Man, R. Lam, E.K. Chow, D. Ho, Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J. Phys. Chem. Lett. 1, 3087–3095 (2010). https://doi.org/10.1021/jz1013278

    Article  CAS  Google Scholar 

  248. H. Huang, E. Pierstorff, E. Osawa, D. Ho, Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2, 203–212 (2008). https://doi.org/10.1021/nn7000867

    Article  CAS  Google Scholar 

  249. J. Tisler, R. Reuter, A. Lammle, F. JElezko, G. Balasubramanian, P.R. Hemmer, F. Reinhard, J. Wrachtrup, Highly efficient FRET from single NV center in nanodiamonds to single organic molecule. ACS Nano 5, 7893–7898 (2011). https://doi.org/10.1021/nn2021259

  250. S. Haziza, N. Mohan, Y. Loe-Mie, A.M. Lepagnol-Bestel, S. Massou, P. AdamM, X.L. Le, J. Viard, C. Plancon, R. Daudin, P. Koebel, E. Dorard, C. Rose, F.J. Hsieh, C.C. Wu, B. Potier, Y. Herault, C. Sala, A. Corvin, B. Allinquant, H.C. Chang, F. Treussart, M. Simonneau, Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol. 12, 322–328 (2016). https://doi.org/10.1038/NNANO.2016.260

    Article  Google Scholar 

  251. N. Mohan, Y.K. Tzeng, L. Yang, Y.Y. Chen, Y.Y. Hui, C.Y. Fang, H.C. Chang, Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv. Mater. 22, 843–847 (2010). https://doi.org/10.1002/adma.200901596

    Article  CAS  Google Scholar 

  252. P. Reineck, D.W.M. Lau, E.R. Wilson, K. Fox, M.R. Field, C. Deeleepojananan, V.N. Mochalin, B.C. Gibson, Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano 11, 10924–10934 (2017). https://doi.org/10.1021/acsnano.7b04647

    Article  CAS  Google Scholar 

  253. L.J. Rogers, K.D. Jahnke, M.H. Metsch, A. Sipahigil, J.M. Binder, T. Teraji, H. Sumiya, J. Isoya, M.D. Lukin, P. Hemmer, F. Jelezko, All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014). https://doi.org/10.1103/physrevlett.113.263602

  254. I.I. Vlasov, A.A. Shiryaev, T. Rendler, S. Steinert, S.Y. Lee, D. Antonov, Vörös M, J. Jelezko, A.V. Fisenko, L.F. Semjonova, J. Biskupek, U. Kaiser, O.I. Lebedev, I. Sildos, P.R. Hemmer, V.I. Konov, A. Gali, J. Wrachtrup, Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2014). https://doi.org/10.1038/NNANO.2013.255

    Article  CAS  Google Scholar 

  255. H. Zhang, I. Aharonovich, D.R. Glenn, R. Schalek, A.P. Magyar, J.W. Lichtman, E.L. Hu, R.L. Walsworth silicon-vacancy color centers in nanodiamonds: cathodoluminescence imaging markers in the near infrared. Small 10 1908–1913 (2014). https://doi.org/10.1002/smll.201303582

  256. V.A. Davydov, A.V. Rakhmanina, S.G. Lyapin, I.D. Ilichev, K.N. Boldyrev, A.A. Shiryaev, V.N. Agafonov, Production of nano and microdiamonds with Si–V and N-V luminescent centers at high pressures in systems based on mixtures of hydrocarbon and fluorocarbon compounds. JETP Lett. 99, 585–589 (2014). https://doi.org/10.1134/S002136401410004X

    Article  CAS  Google Scholar 

  257. T.D. Merson, S. Castelletto, I. Aharonovitch, A. Turbic, T.J. Kilpatrick, A.M. Turnley, Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells. Opt. Lett. 38, 4170–4172 (2013). https://doi.org/10.1364/OL.38.004170

    Article  CAS  Google Scholar 

  258. V. Pichot, B. Risse, F. Schnell, J. Mory, D. Spitzer, Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 3, 2159 (2013). https://doi.org/10.1038/srep02159

  259. V. Pichot, M. Comet, B. Risse, D. Spitzer, Detonation of nanosized explosive: new mechanistic model for nanodiamond formation. Diam. Relat. Mater. 54, 59–63 (2015). https://doi.org/10.1016/j.diamond.2014.09.013

  260. V. Grichko, T. Tyler, V.I. Grishko, O. Shenderova, Nanodiamond particles forming photonic structures. Nanotechnology 19, 225201 (2008). https://doi.org/10.1088/0957-4484/19/22/225201

    Article  CAS  Google Scholar 

  261. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J.C. Arnault, A. Thorel, J.P. Boudou, P.A. Curmi, F. Treussart, Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009). https://doi.org/10.1021/nn901014j

    Article  CAS  Google Scholar 

  262. L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Milvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotech. 6, 358–363 (2011). https://doi.org/10.1038/nnano.2011.64

    Article  CAS  Google Scholar 

  263. S.C. Hens, G. Cunningham, T. Tyler, S. Moseenkov, V. Kuznetsov, O. Shenderova, Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam. Relat. Mater. 17, 1858–1866 (2008). https://doi.org/10.1016/j.diamond.2008.03.020

    Article  CAS  Google Scholar 

  264. V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009). https://doi.org/10.1021/ja9004514

    Article  CAS  Google Scholar 

  265. L.M. Manus, D.J. Mastarone, E.A. Waters, X.Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. NanoLett. 10, 484–489 (2010). https://doi.org/10.1021/nl903264h

    Article  CAS  Google Scholar 

  266. H.A. Girard, A. El Kharbachi, S. Garcia-Argote, T. Petit, P. Bergonzo, B. Rousseau, J.C. Arnault, Tritium labeling of detonation nanodiamonds. Chem. Commun. 50, 2916–2918 (2014). https://doi.org/10.1039/c3cc49653h

    Article  CAS  Google Scholar 

  267. S.S. Tinkle, Maximizing safe design of engineered nanomaterials: the NIH and NIEHS research perspective. Wiley Interdiscip. Rev.: Nanomedicine Nanobiotechnology 2, 88–98 (2010). https://doi.org/10.1002/wnan.63

  268. D.B. Warheit, P.J.A. Borm, C. Hennes, J. Lademann, Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal. Toxicol. 19, 631–643 (2007). https://doi.org/10.1080/08958370701353080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C. Arnault would like to thank H. A. Girard, T. Petit, M. Kurzyp, C. Gesset, C. Sicard-Roselli, E. Brun and M. Mermoux for fruitful discussions. He also acknowledges the different coworkers which contribute to studies dealing with surface modified nanodiamonds. The author also thanks Professor E. Osawa for providing detonation nanodiamonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Arnault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnault, J.C. (2019). Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-12469-4_12

Download citation

Publish with us

Policies and ethics