Skip to main content

Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract

  • Chapter
  • First Online:
Biological Responses to Nanoscale Particles

Abstract

Nanoscience has flourished with increasing use of nanoparticles in many products. The particles enter the environment and affect both biotic and abiotic components of the ecosystem. Via the water supply and the food chain, humans could be affected by ingesting those particles. In this chapter, we will discuss mechanisms by which nanoparticles or their constituents can be translocated from the gastrointestinal tract, what their fate may be and how relevant this is for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B.: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 14, 1109 (2012). https://doi.org/10.1007/s11051-012-1109-9

    Article  ADS  Google Scholar 

  2. Ostiguy, C., Roberge, B., Woods, C., Soucy, B.: Engineered Nanoparticles: Current Knowledge about OHS Risks and Prevention Measures, 2nd edn. Institut de recherche Robert-Sauvé en santé et en sécurité du travail (2010). ISBN 2896314792, 9782896314799. https://www.irsst.qc.ca/en/publications-tools/publication/i/100529/n/engineered-nanoparticles-current-knowledge-about-occupational-health-and-safety-risks-and-prevention-measures-second-edition-r-656/redirected/1

  3. Griffin, S., Masood, M.I., Nasim, M.J., Sarfraz, M., Ebokaiwe, A.P., Schäfer, K.-H., Keck, C.M., Jacob, C.: Natural nanoparticles: a particular matter inspired by Nature. Antioxidants 7, 3 (2018). https://doi.org/10.3390/antiox7010003

    Article  Google Scholar 

  4. Boccuni, F., Ferrante, R., Tombolini, F., Lega, D., Antonini, A., Alvino, A., Pingue, P., Beltram, F., Sorba, L., Piazza, V., Gemmi, M., Porcari, A., Iavicoli, S.: Workers’ exposure to nano-objects with different dimensionalities in R&D laboratories: measurement strategy and field studies. Int. J. Mol. Sci. 19, 349–377 (2018). https://doi.org/10.3390/ijms19020349

    Article  Google Scholar 

  5. Kirch, J., Guenther, M., Doshi, N., Schaefer, U.F., Schneider, M., Mitragotri, S., Lehr, C.-M.: Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge—an ex vivo and in silico approach. J. Control Rel. 159, 128–134 (2012). https://doi.org/10.1016/j.jconrel.2011.12.015

    Article  Google Scholar 

  6. Pan, K., Zhong, Q.: Organic nanoparticles in foods: fabrication, characterization and utilization. Annu. Rev. Food Sci. Technol. 7, 245–266 (2016). https://doi.org/10.1146/annurev-food-041715-033215

    Article  Google Scholar 

  7. Sekhon, B.S.: Food nanotechnology—an overview. Nanotechnol. Sci. Appl. 3, 1–15 (2010). https://doi.org/10.2147/NSA.S8677

    Google Scholar 

  8. Herbst, E.F.G.: Das Lymphgefäßsystem und seine Verrichtungen, pp. 333–337, Göttingen (1844)

    Google Scholar 

  9. Hirsch, R.: Über das Vorkommen von Stärkekörnern im Blut und im Urin. Z. Exp. Path. Ther. 3, 390 (1906)

    Google Scholar 

  10. Volkheimer, G.: Detection of starch in tissue and urine after oral starch intake. Dtsch Gesundheitsw 15, 1298–1302 (1960)

    Google Scholar 

  11. Jani, P.U., Florence, A.T., McCarthy, D.E.: Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int. J. Pharm. 84, 245–252 (1992). https://doi.org/10.1016/0378-5173(92)90162-U

    Google Scholar 

  12. Alpar, H.O., Field, W.N., Hyde, R., Lewis, D.A.: The transport of microspheres from the gastro-intestinal tract to inflammatory air pouches in the rat. J. Pharm. Pharmacol. 41, 194–196 (1989). https://doi.org/10.1111/j.2042-7158.1989.tb06429.x

    Google Scholar 

  13. Payne, J.M., Sansom, B.F., Garner, R.J., Thomson, A.R., Miles, B.J.: Uptake of small resin particles (1-5 µ diameter) by the alimentary canal of the calf. Nature 188, 586–587 (1960). https://doi.org/10.1038/188586a0

    ADS  Google Scholar 

  14. Pontefract, R.D., Cunningham, H.M.: Penetration of asbestos through the digestive tract of rats. Nature 243, 352–353 (1973). https://doi.org/10.1038/243352a0

    Article  ADS  Google Scholar 

  15. Sanders, E., Ashworth, C.T.: A study of particulate intestinal absorption and hepatocellular uptake: Use of polystyrene latex particle. Exp. Cell Res. 22, 137–145 (1961). https://doi.org/10.1016/0014-4827(61)90092-1

    Google Scholar 

  16. Hodges, G.M., Carr, E.A., Hazzard, R.A., O’Reilly, C., Carr, K.E.: A commentary on morphological and quantitative aspects of microparticle translocation across the gastrointestinal mucosa. J. Drug Target. 3, 57–60 (1995). https://doi.org/10.3109/10611869509015934

    Google Scholar 

  17. Ebel, J.P.: A method for quantifying particle absorption from the small intestine of the mouse. Pharm. Res. 7, 848–851 (1990). https://doi.org/10.1023/A:1015964916486

    Google Scholar 

  18. Limpanussorn, J., Simon, L., Dayan, A.D.D.: Transepithelial transport of large particles in rat: a new model for the quantitative study of particle uptake. J. Pharm. Pharmacol. 50, 753–760 (1998). https://doi.org/10.1111/j.2042-7158.1998.tb07136.x

    Google Scholar 

  19. Powell, J.J., Faria, N., Thomas-McKay, E., Pele, L.C.: Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34, J226–J233 (2010). https://doi.org/10.1016/j.jaut.2009.11.006

    Article  Google Scholar 

  20. Fröhlich, E., Mercuri, A., Wu, S., Salar-Behzadi, S.: Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. Front. Pharmacol. 7, 181 (2016). https://doi.org/10.3389/fphar.2016.00181

    Article  Google Scholar 

  21. Squier, C.A., Kremer, M.J.: Biology of oral mucosa and esophagus. J. Natl. Cancer Inst. Monogr. 29, 7–15 (2001). https://doi.org/10.1093/oxfordjournals.jncimonographs.a003443

    Article  Google Scholar 

  22. Squier, C.A.: The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J. Ultrastruct. Res. 43, 160–177 (1973). https://doi.org/10.1016/S0022-5320(73)90076-2

    Google Scholar 

  23. Squier, C.A.: The permeability of oral mucosa. Crit. Rev. Oral Biol. Med. 2, 13–32 (1991)

    Google Scholar 

  24. Ramaker, K., Bade, S., Röckendorf, N., Meckelein, B., Vollmer, E., Schulz, H., Fröschle, G.-W., Frey, A.: Absence of the epithelial glycocalyx as potential tumor marker for the early detection of colorectal cancer. PLoS ONE 11, e0168801 (2016). https://doi.org/10.1371/journal.pone.0168801

  25. Bullen, T.F., Forrest, S., Campbell, F., Dodson, A.R., Hershman, M.J., Pritchard, D.M., Turner, J.R., Montrose, M.H., Watson, A.J.M.: Characterization of epithelial cell shedding from human small intestine. Lab. Invest. 86, 1052–1063 (2006). https://doi.org/10.1038/labinvest.3700464

    Article  Google Scholar 

  26. Madara, J.L.: Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J. Mem. Biol. 116, 177–184 (1990)

    Google Scholar 

  27. Marchiando, A.M., Shen, L., Graham, W.V., Edelblum, K.L., Duckworth, C.A., Guan, Y., Montrose, M.H., Turner, J.R., Watson, A.J.M.: The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 140, 1208–1218 (2011). https://doi.org/10.1053/j.gastro.2011.01.004

    Article  Google Scholar 

  28. Watson, A.J.M., Chu, S., Sieck, L., Gerasimenko, O., Bullen, T., Campbell, F., McKenna, M., Rose, T., Montrose, M.H.: Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 129, 902–912 (2005). https://doi.org/10.1053/j.gastro.2005.06.015

    Article  Google Scholar 

  29. Frey, A., Giannasca, K.T., Weltzin, R., Giannasca, P.J., Reggio, H., Lencer, W.I., Neutra, M.R.: Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184, 1045–1059 (1996). https://doi.org/10.1084/jem.184.3.1045

    Google Scholar 

  30. Pelasayed, T., Bergström, J.H., Gustafsson, J.K., Ermund, A., Birchenough, G.M.H., Schütte, A., van der Post, S., Svensson, F., Rodríguez-Piñeiro, A.M., Nyström, E.E.L., Wising, C., Johansson, M.E.V., Hansson, G.C.: The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260, 8–20 (2014). https://doi.org/10.1111/imr.12182

    Article  Google Scholar 

  31. Johansson, M.E.V., Sjövall, H., Hansson, G.C.: The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013). https://doi.org/10.1038/nrgastro.2013.35

    Article  Google Scholar 

  32. Neutra, M.R., Forstner, J.F.: Gastrointestinal mucus: synthesis, secretion, and function. In: Johnson, L.R. (ed.) Physiology of the Gastrointestinal Tract. Raven Press: New York, NY, U.S.A, (1987)

    Google Scholar 

  33. Johansson, M.E.V., Phillipson, M., Petersson, J., Velcich, A., Holm, L., Hansson, G.C.: The inner of the two MUC2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. U.S.A. 105, 15064–15069 (2008). https://doi.org/10.1073/pnas.0803124105

    Article  ADS  Google Scholar 

  34. Busch, A.E., Herzer, T., Waldegger, S., Schmidt, F., Palacin, M., Biber, J., Markovich, D., Murer, H., Lang, F.: Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. J. Biol. Chem. 269, 25581–25586 (1994)

    Google Scholar 

  35. Palacín, M., Kanai, Y.: The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch. Eur. J. Physiol. 447, 490–494 (2004). https://doi.org/10.1007/s00424-003-1062-7

    Article  Google Scholar 

  36. Howard, A., Hirst, B.H.: The glycine transporter GLYT1 in human intestine: expression and function. Biol. Pharm. Bull. 34, 784–788 (2011). https://doi.org/10.1248/bpb.34.784

    Google Scholar 

  37. Pramod, A.B., Foster, J., Carvelli, L., Henry, L.K.: SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol. Asp. Med. 34, 197–219 (2013). https://doi.org/10.1016/j.mam.2012.07.002

    Article  Google Scholar 

  38. Bröer, A., Klingel, K., Kowalczuk, S., Rasko, J.E.J., Cavanaugh, J., Bröer, S.: Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup Disorder. J. Biol. Chem. 279, 24467–24476 (2004). https://doi.org/10.1074/jbc.M400904200

    Article  Google Scholar 

  39. Takanaga, H., Mackenzie, B., Suzuki, Y., Hediger, M.A.: Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical System Imino. J. Biol. Chem. 280, 8974–8984 (2005). https://doi.org/10.1074/jbc.M413027200

    Article  Google Scholar 

  40. Thwaites, D.T., Anderson, C.M.H.: The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 164, 1802–1816 (2011). https://doi.org/10.1111/j.1476-5381.2011.01438.x

    Article  Google Scholar 

  41. Douard, V., Ferraris, R.P.: Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. 295, E227–E237 (2008). https://doi.org/10.1152/ajpendo.90245.2008

    Article  Google Scholar 

  42. Wright, E.M.: Glucose transport families SLC5 and SLC50. Mol. Asp. Med. 34, 183–196 (2013). https://doi.org/10.1016/j.mam.2012.11.002

    Article  Google Scholar 

  43. Wright, E.M., Turk, E.: The sodium/glucose cotransport family SLC5. Pflugers Arch. Eur. J. Physiol. 447, 510–518 (2004). https://doi.org/10.1007/s00424-003-1063-6

  44. Barley, N.F., Howard, A., O’Callaghan, D., Legon, S., Walters, J.R.F.: Epithelial calcium transporter expression in human duodenum. Am. J. Physiol. 280, G285–G290 (2001). https://doi.org/10.1152/ajpgi.2001.280.2.G285

    Article  Google Scholar 

  45. Vesey, D.A.: Transport pathways for cadmium in the intestine and kidney proximal tubule: focus on the interaction with essential metals. Toxicol. Lett. 198, 13–19 (2010). https://doi.org/10.1016/j.toxlet.2010.05.004

    Article  Google Scholar 

  46. Mackenzie, B., Hediger, M.A.: SLC11 family of H + -coupled metal-ion transporters NRAMP1 and DMT1. Pflugers Arch. Eur. J. Physiol. 447, 571–579 (2004). https://doi.org/10.1007/s00424-003-1141-9

    Article  Google Scholar 

  47. Hashimoto, A., Kambe, T.: Mg, Zn and Cu transport proteins: a brief overview from physiological and molecular perspectives. J. Nutr. Sci. Vitaminol. 61, S116–S118 (2015). https://doi.org/10.3177/jnsv.61.S116

    Article  Google Scholar 

  48. Voets, T., Nilius, B., Hoefs, S., van der Kemp, A.W.C.M., Droogmans, G., Bindels, R.J.M., Hoenderop, J.G.J.: TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279, 19–25 (2004). https://doi.org/10.1074/jbc.M311201200

    Article  Google Scholar 

  49. Reboul, E.: Vitamin E bioavailability: mechanisms of intestinal absorption in the spotlight. Antioxidants 6, 95 (2017). https://doi.org/10.3390/antiox6040095

    Article  Google Scholar 

  50. Reboul, E., Borel, P.: Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mamalian enterocytes. Prog. Lipid Res. 50, 388–402 (2011). https://doi.org/10.1016/j.plipres.2011.07.001

    Article  Google Scholar 

  51. Anderson, C.M., Stahl, A.: SLC27 fatty acid transport proteins. Mol. Asp. Med. 34, 516–528 (2013). https://doi.org/10.1016/j.mam.2012.07.010

    Article  Google Scholar 

  52. Daniel, H., Kottra, G.: The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch. Eur. J. Physiol. 447, 610–618 (2004). https://doi.org/10.1007/s00424-003-1101-4

    Article  Google Scholar 

  53. May, J.M.: The SLC23 family of ascorbate transportes: ensuring that you get and keep your daily dose of vitamin C. Br. J. Pharmacol. 164, 1793–1801 (2011). https://doi.org/10.1111/j.1476-5381.2011.01350.x

    Article  Google Scholar 

  54. Yonezawa, A., Inui, K.: Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol. Asp. Med. 34, 693–701 (2013). https://doi.org/10.1016/j.mam.2012.07.014

    Article  Google Scholar 

  55. Zhao, R., Goldman, I.D.: Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol. Asp. Med. 34, 373–385 (2013). https://doi.org/10.1016/j.mam.2012.07.006

    Article  Google Scholar 

  56. Ganapathy, V., Smith, S.B., Prasad, P.D.: SLC19: the folate/thiamine transporter family. Pflugers Arch. Eur. J. Physiol. 447, 641–646 (2004). https://doi.org/10.1007/s00424-003-1068-1

    Article  Google Scholar 

  57. Roth, M., Obaidat, A., Hagenbuch, B.: OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Brit. J. Pharmacol. 165, 1260–1287 (2012). https://doi.org/10.1111/j.1476-5381.2011.01724.x

    Article  Google Scholar 

  58. Bargheer, D., Giemsa, A., Freund, B., Heine, M., Waurisch, C., Stachowski, G.M., Hickey, S.G., Eychmüller, A., Heeren, J., Nielsen, P.: The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J. Nanotechnol. 6, 111–123 (2015). https://doi.org/10.3762/bjnano.6.11

    Article  Google Scholar 

  59. Heinrich, H.C.: Diagnostik, Ätiologie und Therapie des Eisenmangels unter besonderer Berücksichtigung der 59Fe-Retentionsmessung im Gesamtkörper-Radioaktivitätsdetektor. Der Nuklearmediziner 137, 137–269 (1983)

    Google Scholar 

  60. Bruns, O.T., Ittrich, H., Peldschus, K., Kaul, M.G., Tromsdorf, U.I., Lauterwasser, J., Nikolic, M.S., Mollwitz, B., Merkel, M., Bigall, N.C., Sapra, S., Reimer, R., Hohenberg, H., Weller, H., Eychmüller, A., Adam, G., Beisiegel, U., Heeren, J.: Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat. Nanotechnol. 4, 193–201 (2009). https://doi.org/10.1038/nnano.2008.405

    Article  ADS  Google Scholar 

  61. Kottwitz, K., Laschinsky, N., Fischer, R., Nielsen, P.: Absorption, excretion and retention of 51Cr from labelled Cr-(III)-picolinate in rats. Biometals 22, 289–295 (2009). https://doi.org/10.1007/s10534-008-9165-4

    Google Scholar 

  62. Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., Zhang, X., Tai, R., Fan, C.: The cytotoxicity of cadmium-based quantum dots. Biomaterials 33, 1238–1244 (2012). https://doi.org/10.1016/j.biomaterials.2011.10.070

    Article  Google Scholar 

  63. Cho, S.J., Maysinger, D., Jain, M., Röder, B., Hackbarth, S., Winnik, F.M.: Long-term exposure of CdTe quantum dots causes functional impairments in live cells. Langmuir 23, 1974–1980 (2007). https://doi.org/10.1021/la060093j

    Article  Google Scholar 

  64. Hardman, R.: A toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006). https://doi.org/10.1289/ehp.8284

    Article  Google Scholar 

  65. Hoshino, A., Hanada, S., Yamamoto, K.: Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch. Toxicol. 85, 707–720 (2011). https://doi.org/10.1007/s00204-011-0695-0

    Article  Google Scholar 

  66. Winnik, F.M., Maysinger, D.: Quantum dot cytotoxicity and ways to reduce it. Acc. Chem. Res. 46, 672–680 (2013). https://doi.org/10.1021/ar3000585

    Article  Google Scholar 

  67. Zheng, X., Tian, J., Weng, L., Wu, L., Jin, Q., Zhao, J., Wang, L.: Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip. Nanotechnology 23, 055102 (2012). https://doi.org/10.1088/0957-4484/23/5/055102

    Article  ADS  Google Scholar 

  68. Loginova, Y.F., Dezhurov, S.V., Zherdeva, V.V., Kazachkina, N.I., Wakstein, M.S., Savitsky, A.P.: Biodistribution and stability of CdSe core quantum dots in mouse digestive tract following per os administration: Advantages of double polymer/silica coated nanocrystals. Biochem. Biophys. Res. Commun. 419, 54–59 (2012). https://doi.org/10.1016/j.bbrc.2012.01.123

    Article  Google Scholar 

  69. Mohs, A.M., Duan, H., Kairdolf, B.A., Smith, A.M., Nie, S.: Proton-resistant quantum dots: stability in gastrointestinal fluids and implications for oral delivery of nanoparticle agents. Nano Res. 2, 500–508 (2009). https://doi.org/10.1007/s12274-009-9046-3

  70. Mancini, M.C., Kairdolf, B.A., Smith, A.M., Nie, S.: Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long term fate and toxicity of nanocrystals in-vivo. J. Am. Chem. Soc. 130, 10836–10837 (2008). https://doi.org/10.1021/ja8040477

    Article  Google Scholar 

  71. Smith, A.M., Duan, H., Rhyner, M.N., Ruan, G., Nie, S.: A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys. 8, 3895–3903 (2006). https://doi.org/10.1039/b606572b

    Article  Google Scholar 

  72. Min, K.S., Sano, E., Ueda, H., Sakazaki, F., Yamada, K., Takano, M., Tanaka, K.: Dietary deficiency of calcium and/or iron, an age-related risk factor for renal accumulation of cadmium in Mice. Biol. Pharm. Bull. 38, 1557–1563 (2015)

    Google Scholar 

  73. Hauck, T.S., Anderson, R.E., Fischer, H.C., Newbigging, S., Chan, W.C.W.: In vivo quantum-dot toxicity assessment. Small 6, 138–144 (2010). https://doi.org/10.1002/smll.200900626

    Article  Google Scholar 

  74. Rzigalinski, B.A., Strobl, J.S.: Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol. Appl. Pharmacol. 238, 280–288 (2009). https://doi.org/10.1016/j.taap.2009.04.010

    Article  Google Scholar 

  75. Tsoi, K.M., Dai, Q., Alman, B.A., Chan, W.C.: Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 46, 662–671 (2013). https://doi.org/10.1021/ar300040z

    Article  Google Scholar 

  76. Liu, Y., Li, Y., Liu, K., Shen, J.: Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS ONE 9, e85323 (2014). https://doi.org/10.1371/journal.pone.0085323

    Article  ADS  Google Scholar 

  77. Breton, J., Daniel, C., Dewulf, J., Pothion, S., Froux, N., Sauty, M., Thomas, P., Pot, B., Foligné, B.: Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol. Lett. 222, 132–138 (2013). https://doi.org/10.1016/j.toxlet.2013.07.021

    Article  Google Scholar 

  78. Zhai, Q., Yin, R., Yu, L., Wang, G., Tian, F., Yu, R., Zhao, J., Liu, X., Chen, Y.Q., Zhang, H., Chen, W.: Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control 54, 23–30 (2015). https://doi.org/10.1016/j.foodcont.2015.01.037

    Article  Google Scholar 

  79. Breton, J., Massart, S., Vandamme, P., De Brandt, E., Pot, B., Foligné, B.: Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013). https://doi.org/10.1186/2050-6511-14-62

    Article  Google Scholar 

  80. Tiwari, R., Singh, R.D., Khan, H., Gangopadhyay, S., Mittal, S., Singh, V., Arjaria, N., Shankar, J., Roy, S.K., Singh, D., Srivastava, V.: Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicology 11, 671–686 (2017). https://doi.org/10.1080/17435390.2017.1343874

    Google Scholar 

  81. Nielsen, P.: Chelation therapy for heavy metals. In: Crichton, R., Ward, R.J., Hider, R.C., (eds.) Metal Chelation in Medicine. The Royal Society of Chemistry (2016). https://doi.org/10.1039/9781782623892

  82. Lo, D.D.: Vigilance or subversion? Constitutive and inducible M cells in mucosal tissues. Trends Immunol. 39, 185–195 (2017). https://doi.org/10.1016/j.it.2017.09.002

    Article  Google Scholar 

  83. Mantis, N.J., Frey, A., Neutra, M.R.: Accessibility of glycolipid and oligosaccharide epitopes on rabbit villus and follicle-associated epithelium. Am. Physiol. 278, G915–G923 (2000). https://doi.org/10.1152/ajpgi.2000.278.6.G915

    Article  Google Scholar 

  84. Bonnardel, J., Da Silva, C., Henri, S., Tamoutounour, S., Chasson, L., Montaña-Sanchis, F., Gorvel, J.-P., Lelouard, H.: Innate and adaptive immune functions of Peyer’s patch monocyte-derived cells. Cell Rep. 11, 770–784 (2015). https://doi.org/10.1016/j.celrep.2015.03.067

  85. Neutra, M.R., Frey, A., Kraehenbuhl, J.-P.: Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348 (1996). https://doi.org/10.1016/S0092-8674(00)80106-3

    Google Scholar 

  86. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J.-P., Ricciardi-Castagnoli, P.: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001). https://doi.org/10.1038/86373

    Article  Google Scholar 

  87. Jung, C., Hugot, J.-P., Barreau, F.: Peyer’s patches: the immune sensors of the intestine. Int. J. Inflamm. 2010, 823710 (2010). https://doi.org/10.4061/2010/823710

    Article  Google Scholar 

  88. Knoop, K.A., Kumar, N., Butler, B.R., Sakthivel, S.K., Taylor, R.T., Nochi, T., Akiba, H., Yagita, H., Kiyono, H., Williams, I.R.: RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epitelium. J. Immunol. 183, 5738–5747 (2009). https://doi.org/10.4049/jimmunol.0901563

    Article  Google Scholar 

  89. Kanaya, T., Ohno, H.: The mechanisms of M cell differentiation. Biosci. Microbiota Food Health 33, 91–97 (2014). https://doi.org/10.12938/bmfh.33.91

    Article  Google Scholar 

  90. Jang, M.H., Kweon, M.-N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., Suzuki, T., Nochi, T., Yokota, Y., Rennert, P.D., Hiroi, T., Tamagawa, H., Iijima, H., Kunisawa, J., Yuki, Y., Kiyono, H.: Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. U.S.A 101, 6110–6115 (2004). https://doi.org/10.1073/pnas.0400969101

  91. Lelouard, H., Fallet, M., De Boris, B., Méresse, S., Gorvel, J.-P.: Peyer’s patch dendritic cells sample antigens by extending dendrites through M-cell specific transcellular pores. Gastroenterology 142, 592–601 (2012). https://doi.org/10.1053/j.gastro.2011.11.039

    Article  Google Scholar 

  92. Pelasayed, T., Gustafsson, J.K., Gustafsson, I.J., Ermund, A., Hansson, G.C.: Carbachol-induced MUC-17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes. Am. J. Physiol. 305, C457–C467 (2013). https://doi.org/10.1152/ajpcell.00141.2013

    Article  Google Scholar 

  93. Silveira, J.R., Raymond, G.J., Hughson, A.G., Race, R.E., Sim, V.L., Hayes, S.F., Caughy, B.: The most infectious prion particles. Nature 437, 257–261 (2005). https://doi.org/10.1038/nature03989

    Article  ADS  Google Scholar 

  94. Bade, S., Frey, A.: Potential of active and passive immunizations for the prevention and therapy of transmissible spongiform encephalopathies. Expert Rev. Vaccines 6, 153–168 (2007). https://doi.org/10.1586/14760584.6.2.153

    Article  Google Scholar 

  95. Donaldson, D.S., Kobayashi, A., Ohno, H., Yagita, H., Williams, I.R., Mabbott, N.A.: M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225 (2012). https://doi.org/10.1038/mi.2011.68

    Article  Google Scholar 

  96. Donaldson, D.S., Sehgal, A., Rios, D., Williams, I.R., Mabbott, N.A.: Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 12, e1006075 (2016). https://doi.org/10.1371/journal.ppat.1006075

    Article  Google Scholar 

  97. Ermak, T.H., Dougherty, E.P., Bhagat, H.R., Kabok, Z., Papp, J.: Uptake and transport of copolymer biodegradable microspheres by rabbit Peyer’s patch M cells. Cell Tissue Res. 279, 433–436 (1995). https://doi.org/10.1007/BF00318501

    Google Scholar 

  98. Foged, C., Brodin, B., Frokjaer, S., Sundblad, A.: Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298, 315–322 (2005). https://doi.org/10.1016/j.ijpharm.2005.03.035

    Article  Google Scholar 

  99. Gebert, A., Steinmetz, I., Fassbender, S., Wendlandt, K.-H.: Antigen transport into Peyer’s patches: Increased uptake by constant numbers of M cells. Am. J. Pathol. 164, 65–72 (2004). https://doi.org/10.1016/s0002-9440(10)63097-0

  100. Jepson, M., Simmons, N.L., O’Hagan, D.T., Hirst, B.H.: Comparison of poly(DL-lactide-co-glycolide) and polystyrene microsphere targeting to intestinal M cells. J. Drug Target. 1, 245–249 (1993). https://doi.org/10.3109/10611869308996082

    Article  Google Scholar 

  101. Jepson, M.A., Simmons, N.L., Savidge, T.C., James, P.S., Hirst, B.H.: Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell Tissue Res. 271, 399–405 (1993). https://doi.org/10.1007/BF02913722

    Google Scholar 

  102. Pappo, J., Ermak, T.H.: Uptake and translocation of fluorescent latex particles by rabbit Peyer’s patch follicle epithelium: a quantitative model for M cell uptake. Clin. Exp. Immunol. 76, 144–148 (1989)

    Google Scholar 

  103. Berg, R.D.: Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 3, 149–154 (1995). https://doi.org/10.1016/S0966-842X(00)88906-4

    Google Scholar 

  104. Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.G., Madara, J.L.: Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001). https://doi.org/10.4049/jimmunol.167.4.1882

    Article  Google Scholar 

  105. Husebye, E.: The pathogenesis of gastrointestinal bacterial overgrowth. Chemotherapy 51(Suppl1), 1–22 (2005). https://doi.org/10.1159/000081988

  106. Berkes, J., Viswanathan, V.K., Savkovic, S.D., Hecht, G.: Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52, 439–451 (2003). https://doi.org/10.1136/gut.52.3.439

  107. Mukiza, C.N., Dubreuil, J.D.: Escherichia coli heat-stable toxin b impairs intestinal barrier function by altering tight junction proteins. Infect. Immun. 81, 2819–2827 (2013). https://doi.org/10.1128/IAI.00455-13

    Article  Google Scholar 

  108. Ugalde-Silva, P., Gonzalez-Lugo, O., Navarro-Garcia, F.: Tight junction disruption induced by type 3 secretion system effectors injected by enteropathogenic and enterohemorrhagic Escherichia coli. Front. Cell Infect. Mirobiol. 6, 87 (2016). https://doi.org/10.3389/fcimb.2016.00087

    Article  Google Scholar 

  109. Freeman, H.J.: Spontaneous free perforation of the small intestine in adults. World J. Gastroenterol. 20, 9990–9997 (2014). https://doi.org/10.3748/wjg.v20.i29.9990

    Article  Google Scholar 

  110. Laukoetter, M.G., Nava, P., Nusrat, A.: Role of the intestianal barrier in inflammatory bowel disease. World J. Gastroenterol. 14, 401–407 (2008). https://doi.org/10.3748/wjg.14.401

    Article  Google Scholar 

  111. Schmitz, H., Barmeyer, C., Fromm, M., Runkel, N., Foss, H.-D., Bentzel, C.J., Rieken, E.-O., Schulzke, J.-D.: Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116, 301–309 (1999). https://doi.org/10.1016/S0016-5085(99)70126-5

    Google Scholar 

  112. Lechuga, S., Ivanov, A.I.: Disruption of the epithelial barrier during intestinal inflammation: quest for new molecules and mechanisms. Biochim. Biophys. Acta 1864, 1183–1194 (2017). https://doi.org/10.1016/j.bbamcr.2017.03.007

    Article  Google Scholar 

  113. Lautenschläger, C., Schmidt, C., Lehr, C.-M., Fischer, D., Stallmach, A.: PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur. J. Pharm. Biopharm. 85, 578–586 (2013). https://doi.org/10.1016/j.ejpb.2013.09.016

    Article  Google Scholar 

  114. Champion, J.A., Mitragotri, S.: Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U.S.A. 103, 4930–4934 (2006). https://doi.org/10.1073/pnas.0600997103

    Article  ADS  Google Scholar 

  115. Docter, D., Westmeier, D., Markiewicz, M., Stolte, S., Knauer, S.K., Staubert, R.H.: The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem. Soc. Rev. 44, 6094–6121 (2015). https://doi.org/10.1039/c5cs00217f

    Article  Google Scholar 

  116. Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U.S.A. 105, 14265–14270 (2008). https://doi.org/10.1073/pnas.0805135105

    Article  ADS  Google Scholar 

  117. Saptarshi, S.R., Duschi, A., Lopata, A.L.: Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J. Nanobiotech. 11, 26 (2013). https://doi.org/10.1186/1477-3155-11-26

    Article  Google Scholar 

  118. Parsons, B.N., Campbell, B.J., Wigley, P.: Soluble plantain nonstarch polysaccharides, although increasing caecal load, reduce systemic invasion of Salmonella gallinarum in the chicken. Lett. Appl. Microbiol. 60, 347–351 (2014). https://doi.org/10.1111/lam.12377

    Article  Google Scholar 

  119. Parsons, B.N., Wigley, P., Simpson, H.L., Williams, J.M., Humphrey, S., Salisbury, A.-M., Watson, A.J.M., Fry, S.C., O’Brien, D., Roberts, C.L., O’Kennedy, N., Keita, A.V., Söderholm, J.D., Rhodes, J.M., Campbell, B.J.: Dietary Supplementation with soluble plantain non-starch polysaccharides inhibits intestinal invasion of Salmonella typhimurium in the chicken. PLoS ONE 9, e87658 (2014). https://doi.org/10.1371/journal.pone.0087658

    Article  ADS  Google Scholar 

  120. Roberts, C.L., Keita, A.V., Duncan, S.H., O’Kennedy, N., Söderholm, J.D., Rhodes, J.M., Campbell, B.J.: Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59, 1331–1339 (2010). https://doi.org/10.1136/gut.2009.195370

    Article  Google Scholar 

  121. Roberts, C.L., Keita, A.V., Parsons, B.N., Prorok-Hamon, M., Knight, P., Winstanley, C., O’Kennedy, N., Söderholm, J.D., Rhodes, J.M., Campbell, B.J.: Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens. J. Nutr. Biochem. 24, 97–103 (2013). https://doi.org/10.1016/j.jnutbio.2012.02.013

    Article  Google Scholar 

  122. Hochella Jr., M.F., Spencer, M.G., Jones, K.L.: Nanotechnology: nature’s gift or scientists’ brainchild? Environ. Sci. Nano 2, 114–119 (2015). https://doi.org/10.1039/c4en00145a

    Article  Google Scholar 

  123. Sharma, V.K., Filip, J., Zboril, R., Varma, R.S.: Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chem. Soc. Rev. 44, 8410–8423 (2015). https://doi.org/10.1039/c5cs00236b

    Article  Google Scholar 

  124. Griffin, S., Masood, M.I., Nasim, M.J., Sarfraz, M., Ebokaiwe, A.P., Schäfer, K.-H., Keck, C.M., Jacob, C.: Natural nanoparticles: a particular matter inspired by Nature. Antioxidants 7, 3 (2018). https://doi.org/10.3390/antiox7010003

    Article  Google Scholar 

  125. Strambeanu, N., Demetrovici, L., Dragos, D.: Natural sources of nanoparticles. In: Lungu, M. et al. (eds.) Nanoparticles’ Promises and Risks. Springer International Publishing Switzerland (2015). https://doi.org/10.1007/978-3-319-11728-7

  126. Dykman, L.A., Khlebtsov, N.G.: Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 3, 34–55 (2011)

    Google Scholar 

  127. Zhang, X.F., Liu, Z.G., Shen, W., Gurunathan, S.: Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016). https://doi.org/10.3390/ijms17091534

  128. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016). https://doi.org/10.2147/NSA.S99986

    Google Scholar 

  129. Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S.M., Zarghami, N., Kouhi, M., Akbarzadeh, A., Davaran, S.: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012). https://doi.org/10.1186/1556-276X-7-480

    ADS  Google Scholar 

  130. Pan, K., Zhong, Q.: Organic nanoparticles in foods: fabrication, characterization and utilization. Annu. Rev. Food Sci. Technol. 7, 245–266 (2016). https://doi.org/10.1146/annurev-food-041715-033215

    Article  Google Scholar 

  131. Marcaccio, M., Paolucci, F., eds.: Making and exploiting fullerenes, graphene, and carbon nanotubes. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55083-6

  132. Nasir, S., Hussein, M.Z., Zainal, Z., Yusof, N.A.: Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications. Materials 11, 295 (2018). https://doi.org/10.3390/ma11020295

    Article  ADS  Google Scholar 

  133. Feltracco, M., Barbaro, E., Contini, D., Zangrando, R., Toscano, G., Battistel, D., Barbante, C., Gambaro, A.: Photo-oxidation products of α-pinene in coarse, fine and ultrafine aerosol: a new high sensitive HPLC-MS/MS method. Atmos. Environ. 180, 149–155 (2018). https://doi.org/10.1016/j.atmosenv.2018.02.052

    Article  ADS  Google Scholar 

  134. Kerminen, V.-M.: Roles of SO2 and secondary organics in the growth of nanometer particles in the lower atmosphere. J. Aerosol Sci. 30, 1069–1078 (1999). https://doi.org/10.1016/S0021-8502(98)00775-7

    ADS  Google Scholar 

  135. Tu, P., Johnston, M.V.: Particle size dependence of biogenic secondary organic aerosol molecular composition. Atmos. Chem. Phys. 17, 7593–7603 (2017). https://doi.org/10.5194/acp-17-7593-2017

  136. Lindner, K., Ströbele M., Schlick, S., Webering, S., Jenckel, A., Kopf, J., Danov, O., Sewald, K., Buj, C., Creutzenberg, O., Tillmann, T., Pohlmann, G., Ernst, H., Ziemann, C., Hüttmann, G., Heine, H., Bockhorn, H., Hansen, T., König, P., Fehrenbach, H.: Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons. Part. Fibre Toxicol. 14, 8 (2017). https://doi.org/10.1186/s12989-017-0189-1

  137. Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., Lin, S.-J.: Sources and distributions of dust aerosols simulated with GOCART model. J. Geophys. Res. 106, 20255–20273 (2001). https://doi.org/10.1029/2000JD000053

    ADS  Google Scholar 

  138. D’Andrea, S.D., Häkkinen, S.A.K., Westervelt, D.M., Kuang, C., Levin, E.J.T., Kanawade, V.P., Leaitch, W.R., Spracklen, D.V., Riipinen, I., Pierce, J.R.: Understanding global secondary organic aerosol amount and size-resolved condensational behavior. Atmos. Chem. Phys. 13, 11519–11534 (2013). https://doi.org/10.5194/acp-13-11519-2013

  139. Taghavi, S.M., Momenpour, M., Azarian, M., Ahmadian, M., Souri, F., Taghavi, S.A., Sadeghain, M., Karchani, M.: Effects of nanoparticles on the environment and outdoor workplaces. Electron. Physician 5, 706–712 (2013). https://doi.org/10.14661/2013.706-712

    Article  Google Scholar 

  140. Rivero, P.J., Urrutia, A., Goicoechea, J., Arregui, F.J.: Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 10, 501 (2015). https://doi.org/10.1186/s11671-015-1195-6

    Article  ADS  Google Scholar 

  141. Blackford, D.B., Simons, G.R.: Particle size analysis of carbon black. Part. Charact. 4, 112–117 (1987). https://doi.org/10.1002/ppsc.19870040123

    Google Scholar 

  142. ICBA International Carbon Black Association. Carbon Black User’s Guide. www.carbon-black.org (2016)

  143. SCCS Scientific Committee on Consumer Safety and Chaudhry Q. Opinion of the Scientific Committee on Consusmer Safety (SCCS)—Second revision of the opinion on carbon black, nano-form, in cosmetic products. Regul. Toxicol. Pharmacol. 79, 103–104 (2016). https://doi.org/10.1016/j.yrtph.2016.02.021

  144. Suryanto, B.H.R., Zhao, C.: Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions. Chem. Commun. 52, 6439–6442 (2016). https://doi.org/10.1039/c6cc01319h

    Article  Google Scholar 

  145. Yuan, L., Lu, X.-H., Xiao, X., Zhai, T., Dai, J., Zhang, F., Hu, B., Wang, X., Gong, L., Chen, J., Hu, C., Tong, Y., Zhou, J., Wang, Z.L.: Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6, 656–661 (2012). https://doi.org/10.1021/nn2041279

    Article  Google Scholar 

  146. Yuan, L., Tao, Y., Chen, J., Dai, J., Song, T., Ruan, M., Ma, Z., Gong, L., Liu, K., Zhang, X., Hu, X., Zhou, J., Wang, Z.L.: Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Adv. Funct. Mater. 21, 2150–2154 (2011). https://doi.org/10.1002/adfm.201100172

    Article  Google Scholar 

  147. Posthuma-Trumpie, G.A., Wichers, J.H., Koets, M., Berendsen, L.B.J.M., van Amerongen, A.: Amorphous carbon nanoparticles: a versatile label for diagnostic (immuno)assays. Anal. Bioanal. Chem. 402, 593–600 (2012). https://doi.org/10.1007/s00216-011-5340-5

    Article  Google Scholar 

  148. Rosic, J.S., Conte, M., Muncan, J., Matija, L., Koruga, D.: Characterization of fullerenes thin film on glasses by UV/VIS/NIR and opto-magnetic imaging spectroscopy. FME Trans. 42, 172–176 (2014). https://doi.org/10.5937/fmet1402172S

    Google Scholar 

  149. Gatti, T., Menna, E., Meneghetti, M., Maggini, M., Petrozza, A., Lamberti, F.: The renaissance of fullerenes with perovskite solar cells. Nano Energy 41, 84–100 (2017). https://doi.org/10.1016/j.nanoen.2017.09.016

    Article  Google Scholar 

  150. Liu, L., Niu, Z., Chen, J.: Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 45, 4340–4363 (2016). https://doi.org/10.1039/c6cs00041j

    Article  Google Scholar 

  151. Lv, T., Liu, M., Zhu, D., Gan, L., Chen, T.: Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 2018, 1705489 (2018). https://doi.org/10.1002/adma.201705489

    Article  Google Scholar 

  152. Yong, Y., Zhou, Q., Li, X., Lv, S.: The H60Si6C54 heterofullerene as high-capacity storage medium. AIP Adv. 6, 075321 (2016). https://doi.org/10.1063/1.4960330

    Article  ADS  Google Scholar 

  153. Yoon, M., Yang, S., Hicke, C., Wang, E., Geohegan, D., Zhang, Z.: Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys. Rev. Lett. 100, 206806 (2008). https://doi.org/10.1103/physrevlett.100.206806

    Article  ADS  Google Scholar 

  154. Yoon, M., Yang, S., Wang, E., Zhang, Z.: Charged fullerenes as high-capacity hydrogen storage media. Nano Lett. 7, 2578–2583 (2007). https://doi.org/10.1021/nl070809a

    Article  ADS  Google Scholar 

  155. Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M.V.: Review on the antimicrobial properties of carbon nanostructures. Materials 10, 1066 (2017). https://doi.org/10.3390/ma10091066

    Article  ADS  Google Scholar 

  156. Teradal, N.L., Jelinek, R.: Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater. 6, 1700574 (2017). https://doi.org/10.1002/adhm.201700574

    Article  Google Scholar 

  157. De Smet, R., Demoor, T., Verschuere, S., Dullaers, M., Ostroff, G.R., Leclerq, G., Allais, L., Pilette, C., Dierendonck, M., De Geest, B.G., Cuvelier, C.A.: β-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control Rel. 172, 671–678 (2013). https://doi.org/10.1016/j.jconrel.2013.09.007

    Article  Google Scholar 

  158. des Rieux, A., Fievez, A., Garinot, M., Schneider, Y.-J., Préat, V.: Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control Rel. 116, 1–27 (2006). https://doi.org/10.1016/j.jconrel.2006.08.013

  159. Zhu, Q., Talton, J., Zhang, G., Cunningham, T., Wang, Z., Waters, R.C., Kirk, J., Eppler, B., Klinman, D.M., Sui, Y., Gagnon, S., Belyakov, I.M., Mumper, R.J., Berzofsky, J.A.: Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat. Med. 18, 1291–1297 (2012). https://doi.org/10.1038/nm.2866

    Article  Google Scholar 

  160. Fonte, P., Nogueira, T., Gehm, C., Ferreira, D., Sarmento, B.: Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv. Transl. Res. 1, 299–308 (2011). https://doi.org/10.1007/s13346-011-0023-5

    Article  Google Scholar 

  161. Ren, T., Wang, Q., Xu, Y., Cong, L., Gou, J., Tao, X., Zhang, Y., He, H., Yin, T., Zhang, H., Zhang, Y., Tang, X.: Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J. Control Rel. 269, 423–438 (2018). https://doi.org/10.1016/j.jconrel.2017.11.015

    Article  Google Scholar 

  162. Sun, S., Liang, N., Gong, X., An, W., Kawashima, Y., Cui, F., Yan, P.: Multifunctional composite microcapsules for oral delivery of insulin. Int. J. Mol. Sci. 18, 54 (2017). https://doi.org/10.3390/ijms18010054

    Article  Google Scholar 

  163. Niu, Z., Conejos-Sánchez, I., Griffin, B.T., O’Driscoll, C.M., Alonso, M.J.: Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Deliv. Rev. 106 Part B, 337–354 (2016). https://doi.org/10.1016/j.addr.2016.04.001

    Article  Google Scholar 

  164. Sheng, Y., He, H., Zou, H.: Poly(lactic acid) nanoparticles coated with combined WGA and water-soluble chitosan for mucosal delivery of β-galactosidase. Drug Deliv. 21, 370–378 (2014). https://doi.org/10.3109/10717544.2014.905653

    Article  Google Scholar 

  165. Yin, Y.S., Chen, D.W., Qiao, M.X., Wei, X.Y., Hu, H.Y.: Lectin-conjugated PLGA nanoparticles loaded with thymopentin: ex vivo bioadhesion and in vivo biodistribution. J. Control Rel. 123, 27–38 (2007). https://doi.org/10.1016/j.jconrel.2007.06.024

    Article  Google Scholar 

  166. Menzel, C., Bernkop-Schnürch, A.: Enzyme decorated drug carriers: targeted swords to cleave and overcome the mucus barrier. Adv. Drug Deliv. Rev. 124, 164–174 (2018). https://doi.org/10.1016/j.addr.2017.10.004

    Article  Google Scholar 

  167. Frøkjær, J.B., Drewes, A.M., Gregersen, H.: Imaging of the gastrointestinal tract-novel technologies. World J. Gastroenterol. 15, 160–168 (2009). https://doi.org/10.3748/wjg.15.160

    Google Scholar 

  168. Stark, D.D., Weissleder, R., Elizondo, G., Hahn, P.F., Saini, S., Todd, L.E., Wittenberg, J., Ferrucci, J.T.: Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301 (1988). https://doi.org/10.1148/radiology.168.2.3393649

    Google Scholar 

  169. Shokrollahi, H.: Contrast agents for MRI. Mater. Sci. Eng. C 33, 4485–4497 (2013). https://doi.org/10.1016/j.msec.2013.07.012

    Google Scholar 

  170. Li, W., Tutton, S., Vu, A.T., Pierchala, L., Li, B.S.Y., Lewis, J.M., Prasad, P.V., Edelman, R.R.: First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imaging 21, 46–52 (2005). https://doi.org/10.1002/jmri.20235

    Google Scholar 

  171. Frisch, A., Walter, T.C., Hamm, B., Denecke, T.: Efficacy of oral contrast agents for upper gastrointestinal signal suppression in MRCP: A systematic review of the literature. Acta Radiol. Open 6, 2058460117727315 (2017). https://doi.org/10.1177/2058460117727315

    Article  Google Scholar 

  172. Maccioni, F., Bruni, A., Viscido, A., Colaiacomo, M.C., Cocco, A., Montesani, C., Caprilli, R., Marini, M.: MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology 238, 517–530 (2006). https://doi.org/10.1148/radiol.2381040244

    Article  Google Scholar 

  173. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005). https://doi.org/10.1038/nature03808

    ADS  Google Scholar 

  174. Salamon, J., Hofmann, M., Jung, C., Kaul, M.G., Werner, F., Them, K., Reimer, R., Nielsen, P., vom Scheidt, A., Adam, G., Knopp, T., Ittrich, H.: Magnetic particle/magnetic resonance imaging: In-Vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach. PLoS ONE 11, e0156899 (2016). https://doi.org/10.1371/journal.pone.0156899

    Article  Google Scholar 

  175. Yu, E.Y., Chandrasekharan, P., Berzon, R., Tay, Z.W., Zhou, X.Y., Khandhar, A.P., Ferguson, R.M., Kemp, S.J., Zheng, B., Goodwill, P.W., Wendland, M.F., Krishnan, K.M., Behr, S., Carter, J., Conolly, S.M.: Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano 11, 12067–12076 (2017). https://doi.org/10.1021/acsnano.7b04844

    Article  Google Scholar 

  176. Gamboa, J.M., Leong, K.W.: In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliv. Rev. 65, 800–810 (2013). https://doi.org/10.1016/j.addr.2013.01.003

    Article  Google Scholar 

  177. Buhrke, T., Lengler, I., Lampen, A.: Analysis of proteomic changes induced upon cellular differentiation of the human intestinal cell line Caco-2. Dev. Growth Differ. 53, 411–426 (2011). https://doi.org/10.1111/j.1440-169X.2011.01258.x

    Article  Google Scholar 

  178. Hidalgo, I.J., Raub, T.J., Borchardt, R.T.: Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96, 736–749 (1989)

    Google Scholar 

  179. Sinnecker, H., Ramaker, K., Frey, A.: Coating with luminal gut-constituents alters adherence of nanoparticles to intestinal epithelial cells. Beilstein J. Nanotechnol. 5, 2308-2315 (2014). https://doi.org/10.3762/bjnano.5.239

  180. Béduneau, A., Tempesta, C., Fimbel, S., Pellequer, Y., Jannin, V., Demarne, F., Lamprecht, A.: A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur. J. Pharm. Biopharm. 87, 290–298 (2014). https://doi.org/10.1016/j.ejpb.2014.03.017

    Article  Google Scholar 

  181. Mahler, G.J., Shuler, M.L., Glahn, R.P.: Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 20, 494–502 (2009). https://doi.org/10.1016/j.jnutbio.2008.05.006

    Article  Google Scholar 

  182. Kernéis, S., Bogdanova, A., Kraehenbuhl, J.-P., Pringault, E.: Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277, 949–952 (1997). https://doi.org/10.1126/science.277.5328.949

    Article  Google Scholar 

  183. Ahmad, T., Gogarty, M., Walsh, E.G., Brayden, D.J.: A comparison of three Peyer’s patch “M-like” cell culture models: particle uptake, bacterial interaction and epithelial histology. Eur. J. Pharm. Biopharm. 119, 426–436 (2017). https://doi.org/10.1016/j.ejpb.2017.07.013

  184. des Rieux, A., Fievez, V., Théate, I., Mast, J., Préat, V., Schneider, Y.-J.: An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 30, 380–391 (2007). https://doi.org/10.1016/j.ejps.2006.12.006

  185. Gullberg, E., Leonard, M., Karlsson, J., Hopkins, A.M., Brayden, D., Baird, A.W., Artursson, P.: Expression of specific markers and particle transport in a new human intestinal M cell model. Biochim. Biophys. Res. Commun. 279, 808–813 (2000). https://doi.org/10.1006/bbrc.2000.4038

    Article  Google Scholar 

  186. Schimpel, C., Teubl, B., Absenger, M., Meindl, C., Fröhlich, E., Leitinger, G., Zimmer, A., Roblegg, E.: Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol. Pharm. 11, 808–818 (2014). https://doi.org/10.1021/mp400507g

    Article  Google Scholar 

  187. Hilgers, A.R., Conradi, R.A., Burton, P.S.: Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7, 902–910 (1990). https://doi.org/10.1023/A:1015937605100

    Google Scholar 

  188. Beloqui, A., des Lieux, A., Préat, V.: Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv. Drug Deliv. Rev. 106, Part B, 242–255 (2016). https://doi.org/10.1016/j.addr.2016.04.014

  189. He, B., Lin, P., Jia, Z., Du, W., Qu, W., Yuan, L., Dai, W., Zhang, H., Wang, X., Wang, J., Zhang, X., Zhang, Q.: The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials 34, 6082–6098 (2013). https://doi.org/10.1016/j.biomaterials.2013.04.053

    Article  Google Scholar 

  190. Russel-Jones, G.J., Arthur, L., Walker, H.: Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. Int. J. Pharm. 179, 247–255 (1999). https://doi.org/10.1016/S0378-5173(98)00394-9

    Google Scholar 

  191. Sheng, J., Han, L., Qin, J., Ru, G., Li, R., Wu, L., Cui, D., Yang, P., He, Y., Wang, J.: N-Trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl. Mater. Interfaces 7, 15430–15441 (2015). https://doi.org/10.1021/acsami.5b03555

    Article  Google Scholar 

  192. Luo, Y., Teng, Z., Li, Y., Wang, Q.: Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym. 122, 221–229 (2015). https://doi.org/10.1016/j.carbpol.2014.12.084

    Article  Google Scholar 

  193. Araújo, F., Shrestha, N., Shahbazi, M.-A., Fonte, P., Mäkilä, E.M., Salonen, J.J., Hirvonen, J.T., Granja, P.L., Santos, H.A., Sarmento, B.: The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 35, 9199–9207 (2014). https://doi.org/10.1016/j.biomaterials.2014.07.026

    Article  Google Scholar 

  194. Lichtenstein, D., Ebmeyer, J., Meyer, T., Behr, A.-C., Kästner, C., Böhmert, L., Juling, S., Nieman, B., Fahrenson, C., Selve, S., Thünemann, A.F., Meijer, J., Estrela-Lopis, I., Braeuning, A., Lampen, A.: It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. Eur. J. Pharm. Biopharm. 118, 21–29 (2017). https://doi.org/10.1016/j.ejpb.2016.12.004

    Article  Google Scholar 

  195. Giannasca, K.T., Giannasca, P.J., Neutra, M.R.: Adherence of Salmonella typhimurium to Caco-2 cells: identification of a glycoconjugate receptor. Infect. Immun. 64, 135–145 (1996)

    Google Scholar 

  196. Jahn, K.A., Biazik, J.M., Braet, F.: GM1 Expression in Caco-2 cells: characterisation of a fundamental passage-dependent transformation of a cell line. J. Pharmaceut. Sci. 100, 3751–3762 (2011). https://doi.org/10.1002/jps.22418

    Article  Google Scholar 

  197. Behrens, I., Vila Pena, A.I., Alonso, M.J., Kissel, T.: Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm. Res. 19, 1185–1193 (2002). https://doi.org/10.1023/A:10198543

    Google Scholar 

  198. Ke, Z., Guo, H., Zhu, X., Jin, Y., Huang, Y.: Efficient peroral delivery of insulin via vitamin B12 modified trimethyl chitosan nanoparticles. J. Pharm. Pharm. Sci. 18, 155–170 (2015)

    Google Scholar 

  199. Yoshida, T., Yoshioka, Y., Takahashi, H., Misato, K., Mori, T., Hirai, T., Nagano, K., Abe, Y., Mukai, Y., Kamada, H., Tsunoda, S., Nabeshi, H., Yoshikawa, T., Higashisaka, K., Tsutsumi, Y.: Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res. Lett. 9, 532–538 (2014). https://doi.org/10.1186/1556-276X-9-532

    Google Scholar 

  200. Wiwattanapatapee, R., Carreño-Gomez, B., Malik, N., Duncan, R.: Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17, 991–998 (2000). https://doi.org/10.1023/A:1007587523543

  201. Lautenschläger, I., Dombrowski, H., Frerichs, I., Kuchenbecker, S.C., Bade, S., Schultz, H., Zabel, P., Scholz, J., Weiler, N., Uhlig, S.: A model of the isolated perfused rat small intestine. Am. J. Physiol. 298, G304–G313 (2010). https://doi.org/10.1152/ajpgi.00313.2009

    Article  Google Scholar 

  202. Sinnecker, H., Krause, T., Koelling, S., Lautenschläger, I., Frey, A.: The gut wall provides an effective barrier against nanoparticle uptake. Beilstein J. Nanotechnol. 5, 2092–2101 (2014). https://doi.org/10.3762/bjnano.5.218

    Article  Google Scholar 

  203. Bergin, I.L., Witzmann, F.A.: Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol. 3, 163–210 (2013). https://doi.org/10.1504/ijbnn.2013.054515

    Article  Google Scholar 

  204. Delie, F.: Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv. Drug Deliv. Rev. 34, 221–233 (1998). https://doi.org/10.1016/S0169-409X(98)00041-6

    Google Scholar 

  205. Bölke, T., Krapf, L., Orzekowsky-Schroeder, R., Vossmeyer, T., Dimitrijevic, J., Weller, H., Schüth, A., Klinger, A., Hüttmann, G., Gebert, A.: Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy. Beilstein J. Nanotechnol. 5, 2016–2025 (2014). https://doi.org/10.3762/bjnano.5.210

    Article  Google Scholar 

  206. Lee, C.-M., Lee, T.K., Kim, D.-I., Kim, Y.-R., Kim, M.-K., Jeong, H.-J., Sohn, M.-H., Lim, S.T.: Optical imaging of absorption and distribution of RITC-SiO2 nanoparticles after oral administration. Int. J. Nanomed. 9(Suppl 2), 243–250 (2014). https://doi.org/10.2147/ijn.s57938

    Article  Google Scholar 

  207. Howe, S.E., Lickteig, D.J., Plunkett, K.N., Ryerse, J.S., Konjufca, V.: The uptake of soluble and particulate antigens by epithelial cells in the mouse small intestine. PLoS ONE 9, e86656 (2014). https://doi.org/10.1371/journal.pone.0086656

    Article  ADS  Google Scholar 

  208. Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., Mortensen, A., Lam, H.R., Larsen, E.H.: Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 8, 18 (2011). https://doi.org/10.1186/1743-8977-8-18

    Google Scholar 

  209. Jani, P., Halbert, G.W., Langridge, J., Florence, A.T.: Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol. 42, 821–826 (1990). https://doi.org/10.1111/j.2042-7158.1990.tb07033.x

    Google Scholar 

  210. Geraets, L., Oomen, A.G., Krystek, P., Jaobsen, N.R., Wallin, H., Laurentie, M., Verharen, H.W., Brandon, E.F.A., de Jong, W.H.: Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre Toxicol. 11, 30 (2014). https://doi.org/10.1186/1743-8977-11-30

    Google Scholar 

  211. Janer, G., Mas del Molino, E., Fernández-Rosas, E., Fernández, A., Vázquez-Campos, S.: Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol. Lett. 228, 103–110 (2014). https://doi.org/10.1016/j.toxlet.2014.04.014

  212. Jovanovic, B.: Critical review of public health regulations of titanium dioxide, a human food additive. Integr. Environ. Assess. Manag. 11, 10–20 (2015). https://doi.org/10.1002/ieam.1571

    Article  Google Scholar 

  213. Böckmann, J., Lahl, H., Eckert, T., Unterhalt, B.: Titan-Blutspiegel vor und nach Belastungsversuchen mit Titandioxid. Pharmazie 55, 140–143 (2000)

    Google Scholar 

  214. Jones, K., Morton, J., Smith, I., Jurkschat, K., Harding, A.-H., Evans, G.: Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 233, 95–101 (2015). https://doi.org/10.1016/j.toxlet.2014.12.005

    Article  Google Scholar 

  215. Pele, L.C., Thoree, V., Bruggraber, S.F.A., Koller, D., Thompson, R.P.H., Lomer, M.C., Powell, J.J.: Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers. Part. Fibre Toxicol. 12, 26 (2015). https://doi.org/10.1186/s12989-015-0101-9

    Article  Google Scholar 

  216. Rompelberg, C., Heringa, M.B., van Donkersgoed, G., Drijvers, J., Roos, A., Westenbrink, S., Peters, R., van Bemmel, G., Brand, W., Oomen, A.G.: Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 10, 1404–1414 (2016). https://doi.org/10.1080/17435390.2016.1222457

    Article  Google Scholar 

  217. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., von Goertz, N.: Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242–2250 (2012). https://doi.org/10.1021/es204168d

    Article  ADS  Google Scholar 

  218. Jani, P.U., McCarthy, D.E., Florence, A.: Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int. J. Pharm. 105, 157–168 (1994). https://doi.org/10.1016/0378-5173(94)90461-8

    Google Scholar 

  219. Hummel, T.Z., Kindermann, A., Stokkers, P.C.F., Benninga, M.A., ten Kate, F.J.W.: Exogenous pigment in Peyer’s patches of children suspected of having IBD. J. Pediatr. Gastroenterol. Nutr. 58, 477–480 (2014). https://doi.org/10.1097/MPG.0000000000000221

    Article  Google Scholar 

  220. Shepherd, N.A., Crocker, P.R., Smith, A.P., Levison, D.A.: Exogenous pigment in Peyer’s patches. Human Pathol. 18, 50–54 (1987). https://doi.org/10.1016/S0046-8177(87)80193-4

    Google Scholar 

  221. Feliu, N., Docter, D., Heine, M., Del Pino, P., Ashraf, S., Kolosnjaj-Tabi, J., Macchiarini, P., Nielsen, P., Alloyeau, D., Gazeau, F., Stauber, R.H., Parak, W.J.: In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45, 2440–2457 (2016). https://doi.org/10.1039/C5CS00699F

    Google Scholar 

  222. Carambia, A., Freund, B., Schwinge, D., Bruns, O.T., Salmen, S.C., Ittrich, H., Reimer, R., Heine, M., Huber, S., Waurisch, C., Eychmüller, A., Wraith, D.C., Korn, T., Nielsen, P., Weller, H., Schramm, C., Lüth, S., Lohse, A.W., Heeren, J., Herkel, J.: Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J. Hepatol. 62, 1349–1356 (2015). https://doi.org/10.1016/j.jhep.2015.01.006

    Google Scholar 

  223. Jung, C.S.L., Heine, M., Freund, B., Reimer, R., Koziolek, E.J., Kaul, M.G., Kording, F., Schumacher, U., Weller, H., Nielsen, P., Adam, G., Heeren, J., Ittrich, H.: Quantitative activity measurements of brown adipose tissue at 7 T magnetic resonance imaging after application of triglyceride-rich lipoprotein 59Fe-superparamagnetic iron oxide nanoparticle: intravenous versus intraperitoneal approach. Invest. Radiol. 51, 194–202 (2016). https://doi.org/10.1097/RLI.0000000000000235

    Article  Google Scholar 

  224. Wang, Y., Zhao, Y., Cui, Y., Zhao, Q., Zhang, Q., Musetti, S., Kinghorn, K.A., Wang, S.: Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomater. 65, 405–416 (2018). https://doi.org/10.1016/j.actbio.2017.10.025

    Article  Google Scholar 

  225. Bartelt, A., Bruns, O.T., Reimer, R., Hohenberg, H., Ittrich, H., Peldschus, K., Kaul, M.G., Tromsdorf, U.I., Weller, H., Waurisch, C., Eychmüller, A., Gordts, P.L.S.M., Rinninger, F., Bruegelmann, K., Freund, B., Nielsen, P., Merkel, M., Heeren, J.: Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011). https://doi.org/10.1038/nm.2297

    Google Scholar 

  226. Freund, B., Tromsdorf, U.I., Bruns, O.T., Heine, M., Giemsa, A., Bartelt, A., Salmen, S.C., Raabe, N., Heeren, J., Ittrich, H., Reimer, R., Hohenberg, H., Schumacher, U., Weller, H., Nielsen, P.: A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano 6, 7318–7325 (2012). https://doi.org/10.1021/nn3024267

    Google Scholar 

  227. Kreyling, W.G., Hirn, S., Möller, W., Schleh, C., Wenk, A., Celik, G., Lipka, J., Schäffler, M., Haberl, N., Johnston, B.D., Sperling, R., Schmid, G., Simon, U., Parak, W.J., Semmler-Behnke, M.: Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8, 222–233 (2014). https://doi.org/10.1021/nn403256v

    Google Scholar 

  228. Schleh, C., Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schäffler, M., Schmid, G., Simon, U., Kreyling, W.G.: Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6, 36–46 (2012). https://doi.org/10.3109/17435390.2011.552811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Frey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, A. et al. (2019). Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. In: Gehr, P., Zellner, R. (eds) Biological Responses to Nanoscale Particles. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12461-8_12

Download citation

Publish with us

Policies and ethics