Skip to main content

Imaging of the Patellofemoral Joint

  • Chapter
  • First Online:
Disorders of the Patellofemoral Joint

Abstract

Imaging is paramount in the assessment of the patellofemoral (PF) joint as it provides an objective way of detecting morphological abnormalities. The anteroposterior (AP) plain radiograph is not very helpful for evaluating PF joint problems, but it is very important to assess the overall limb alignment and to identify lateral patellar dislocation or subluxation. Lateral plain radiograph is the most interesting view of the knee in PF joint analysis. It allows us to assess patellar height and trochlear dysplasia. The skyline view permits us to evaluate patellar tilt and patellar morphology. The advantage of computed tomography (CT) versus plain radiographs is that it allows the evaluation of patella in the last degrees of extension (0–30°). Axial CT cuts are useful for identifying osteochondral fractures and for visualizing the trochlear morphology. CT allows the superimposition of images and the evaluation of the TT-TG (tibial tubercle-trochlear groove) distance and the patellar tilt; additionally, CT can detect torsional deformities as external tibial torsion and femoral anteversion. In comparison with CT, MRI allows evaluating the PF joint in a similar way but with thinner cuts and without radiation for the patient. MRI has the ability of visualizing the articular surfaces and the soft tissue structures, such as the medial PF ligament (MPFL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maloney E, Stanescu AL, Ngo AV, Parisi MT, Iyer RS. The pediatric patella: normal development, anatomical variants and malformations, stability, imaging, and injury patterns. Semin Musculoskelet Radiol. 2018;22:81–94.

    Article  Google Scholar 

  2. Meyers AB, Laor T, Sharafinski M, Zbojniewicz AM. Imaging assessment of patellar instability and its treatment in children and adolescents. Pediatr Radiol. 2016;46:618–36.

    Article  Google Scholar 

  3. Dejour D, Saggin PR, Meyer X, Tavernier T. Standard X-ray examination: patellofemoral disorders. In: Zaffagnini S, Dejour D, Arendt EA, editors. Patellofemoral pain, instability, and arthritis. Berlin Heidelberg: Springer Verlag; 2010. p. 51–9.

    Chapter  Google Scholar 

  4. Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res. 1972;88:67–9.

    Article  CAS  Google Scholar 

  5. Grelsamer RP, Meadows S. The modified Insall-Salvati ratio for patellar height. Clin Orthop Relat Res. 1992;282:170–6.

    Google Scholar 

  6. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Les rotules basses: a propos de 128 observations. Rev Chir Orthop. 1982;68:317–25.

    CAS  PubMed  Google Scholar 

  7. Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg. 1977;59B:241–2.

    Article  Google Scholar 

  8. Barnett AJ, Prentice M, Mandalia V, et al. Patellar height measurement in trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2009;17(12):1412.

    Article  CAS  Google Scholar 

  9. Seil R, Muller B, Georg T, et al. Reliability and interobserver variability in radiological patellar height ratios. Knee Surg Sports Traumatol Arthrosc. 2000;8:231–6.

    Article  CAS  Google Scholar 

  10. Bernageau J, Goutallier D, Debeyre J, Ferrane J. Nouvelle technique d’exploration de l’articulation f.moropatellaire. Incidences axiales quadriceps contract. et d.contract. Rev Chir Orthop Reparatrice Appar Mot. 1969;61(Suppl 2):286–9.

    Google Scholar 

  11. Chareancholvanich K, Narkbunnam R. Novel method of measuring patellar height ratio using a distal femoral reference point. Int Orthop. 2012;36:749–53.

    Article  Google Scholar 

  12. Batailler C, Neyret P. Trochlear dysplasia: imaging and treatment options. EFORT Open Rev. 2018;3:240–7.

    Article  Google Scholar 

  13. Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.

    Article  CAS  Google Scholar 

  14. Malghem J, Maldague B. Depth insufficiency of the proximal trochlear groove on lateral radiographs of the knee: relation to patellar dislocation. Radiology. 1989;170:507–10.

    Article  CAS  Google Scholar 

  15. Wiberg G. Roentgenographic and anatomic studies on the femoropatellar joint. Acta Orthop Scand. 1941;12:319–410.

    Article  Google Scholar 

  16. Iwano T, Kurosawa H, Tokuyama H, Hoshikawa Y. Roentgenographic and clinical findings of patellofemoral osteoarthrosis with special reference to its relationship to femorotibial osteoarthrosis and etiologic factors. Clin Orthop Relat Res. 1990;252:190–7.

    Google Scholar 

  17. Delgado-Martínez AD, Rodríguez-Merchán EC, Ballesteros R, Luna JD. Reproducibility of patellofemoral CT scan measurements. Int Orthop. 2000;24:5–8.

    Article  Google Scholar 

  18. Delgado-Martínez AD, Estrada C, Rodríguez-Merchán EC, Atienza M, Ordóñez JM. CT scanning of the patellofemoral joint. The quadriceps relaxed or contracted? Int Orthop. 1996;20:159–62.

    Article  Google Scholar 

  19. Tanaka MJ, Elias JJ, Williams AA, Demehri S, Cosgarea AJ. Characterization of patellar maltracking using dynamic kinematic CT imaging in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc. 2016;24:3634–41.

    Article  Google Scholar 

  20. Sanders TG, Miller MD. A systematic approach to magnetic resonance imaging interpretation of sports medicine injuries of the shoulder. Am J Sports Med. 2005;33:1088–105.

    Article  Google Scholar 

  21. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85(suppl 2):58–69.

    Article  Google Scholar 

  22. Tompkins MA, Rohr SR, Agel J, Arendt EA. Anatomic patellar instability risk factors in primary lateral patellar dislocations do not predict injury patterns: an MRI-based study. Knee Surg Sports Traumatol Arthrosc. 2018;26:677–84.

    Article  Google Scholar 

  23. Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy. 2003;19:717–21.

    Article  Google Scholar 

  24. Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225:736–43.

    Article  Google Scholar 

  25. Kim HK, Shiraj S, Kang CH, Anton C, Kim DH, Horn PS. Patellofemoral instability in children: correlation between risk factors, injury patterns, and severity of cartilage damage. Am J Roentgenol. 2016;206:1321–8.

    Article  Google Scholar 

  26. Hash TW. Magnetic resonance imaging of the knee. Sports Health. 2013;5:78–107.

    Article  Google Scholar 

  27. Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216:858–64.

    Article  CAS  Google Scholar 

  28. Askenberger M, Bengtsson Moström E, Ekström W, et al. Operative repair of medial patellofemoral ligament injury versus knee brace in children with an acute first-time traumatic patellar dislocation: a randomized controlled trial. Am J Sports Med. 2018;1:363546518770616.

    Google Scholar 

  29. Carrillon Y, Abidi H, Dejour D, et al. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216:582–5.

    Article  CAS  Google Scholar 

  30. Paiva M, Blønd L, Hölmich P, et al. Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sports Traumatol Arthrosc. 2018;26:746–55.

    Article  Google Scholar 

  31. Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc. 2007;15:40.

    Article  Google Scholar 

  32. Lippacher S, Dejour D, Elsharkawi M, et al. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med. 2012;40:837–43.

    Article  Google Scholar 

  33. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.

    Article  CAS  Google Scholar 

  34. Brady JM, Sullivan JP, Nguyen J, et al. The tibial tubercle-to-trochlear groove distance is reliable in the setting of trochlear dysplasia, and superior to the tibial tubercle-to-posterior cruciate ligament distance when evaluating coronal malalignment in patellofemoral instability. Arthroscopy. 2017;33:2026–34.

    PubMed  Google Scholar 

  35. Wittstein JR, O’Brien SD, Vinson EN, Garrett WE Jr. MRI evaluation of anterior knee pain: predicting response to nonoperative treatment. Skelet Radiol. 2009;38:895–901.

    Article  Google Scholar 

  36. Pandit S, Frampton C, Stoddart J, Lynskey T. Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop. 2011;35:1799–803.

    Article  Google Scholar 

  37. Skelley N, Friedman M, McGinnis M, Smith C, Hillen T, Matava M. Inter- and intraobserver reliability in the MRI measurement of the tibial tubercle–trochlear groove distance and trochlea dysplasia. Am J Sports Med. 2015;43:873–8.

    Article  Google Scholar 

  38. Camp CL, Stuart MJ, Krych AJ, et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med. 2013;41:1835–40.

    Article  Google Scholar 

  39. Schottle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance: a comparative study between CT and MRI scanning. Knee. 2006;13:26–31.

    Article  Google Scholar 

  40. Brady JM, Rosencrans AS, Shubin Stein BE. Use of TT-PCL versus TT-TG. Curr Rev Musculoskelet Med. 2018;11:261–5.

    Article  Google Scholar 

  41. Marquez-Lara A, Andersen J, Lenchik L, Ferguson CM, Gupta P. Variability in patellofemoral alignment measurements on MRI: influence of knee position. AJR Am J Roentgenol. 2017;208:1097–102.

    Article  Google Scholar 

  42. Albrecht S, Biedert RM. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14:707–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Encinas-Ullán, C.A., Rodríguez-Merchán, E.C. (2019). Imaging of the Patellofemoral Joint. In: Rodríguez-Merchán, E., Liddle, A. (eds) Disorders of the Patellofemoral Joint. Springer, Cham. https://doi.org/10.1007/978-3-030-12442-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12442-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12441-0

  • Online ISBN: 978-3-030-12442-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics