Skip to main content

A Personalized Blood Pressure Prediction Model Using Recurrent Kernel Extreme Reservoir Machine

  • Conference paper
  • First Online:
Book cover Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 69))

Included in the following conference series:

  • 1350 Accesses

Abstract

Hypertension is becoming a global epidemic for the developing world and continuous blood pressure monitoring and early diagnosis is vital for the prevention of this disease. However, in real life, patients are usually unable to maintain frequent monitoring because of reasons that include forgetfulness, human error and/or machine error. This paper presents a personalized prediction model for blood pressure using Recurrent Kernel Extreme Reservoir Machine (RKERM). This technique combines reservoir computing with RKELM to perform multistep ahead prediction. We use RKERM for blood pressure prediction and its performance is evaluated with other ELM based prediction algorithms. To evaluate our model, we use real world blood pressure data collected from Malaysian population consisting of hypertensive and non-hypertensive patients. The experimental results show that the proposed prediction mechanism has higher prediction accuracy than existing ELM methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosendorff, C.: Essential Cardiology: Principles and Practice. Springer, Heidelberg (2005)

    Google Scholar 

  2. Omar, M.A., Irfan, N.I., Yil, K.Y., Muksan, N., Abdul Majid, N.L., Mohd Yusoff, M.F.: Prevalence of young adult hypertension in Malaysia and its associated factors: findings from national health and morbidity survey 2011. Malays. J. Public Health Med. 16(3), 274–283 (2016)

    Google Scholar 

  3. Ehret, G.B., Munroe, P.B., Rice, K.M., Bochud, M., Johnson, A.D., Chasman, D.I., Smith, A.V., Tobin, M.D., Verwoert, G.C., Hwang, S.J., et al.: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367), 103–109 (2011)

    Article  Google Scholar 

  4. Marik, P.E., Varon, J.: Hypertensive crises: challenges and management. Chest 131(6), 1949–1962 (2007)

    Article  Google Scholar 

  5. Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K., He, J.: Global burden of hypertension: analysis of worldwide data. The Lancet 365(9455), 217–223 (2005)

    Article  Google Scholar 

  6. Institute for Public Health: National Health and Morbidity Survey 2011 (NHMS 2011): Non-Communicable Disease (2011)

    Google Scholar 

  7. Institute for Public Health: The Third National Health and Morbidity Survey (NHMS III) (2006), (2008)

    Google Scholar 

  8. Krishnan, A., Garg, R., Kahandaliyanage, A.: Hypertension in the South-East Asia region: an overview. In: World Health Organization South East Asia Region Regional Health Forum, vol. 17, no. 1 (2013)

    Google Scholar 

  9. World Health Organization: A global brief on Hypertension, World Health Day (2013)

    Google Scholar 

  10. Mayo Clinic: Get the most out of home blood pressure monitoring, 07 March 2018. https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/in-depth/high-blood-pressure/art-20047889. Accessed 16 July 2018

  11. Amato, F., López, A., Peña-Méndez, E.M., Vaňhara, P., Hampl, A., Havel, J.: Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11(2), 47–58 (2013)

    Article  Google Scholar 

  12. CireÅŸan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: International Conference on Medical Image Computing and Computer-assisted Intervention (2013)

    Google Scholar 

  13. Samant, R., Rao, S.: Evaluation of artificial neural networks in prediction of essential hypertension. Int. J. Comput. Appl. 81(12), 34–38 (2013)

    Google Scholar 

  14. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  15. Ding, S., Xu, X., Nie, R.: Extreme learning machine and its applications. Neural Comput. Appl. 25(3–4), 549–556 (2014)

    Article  Google Scholar 

  16. Liu, N., Cao, J., Koh, Z.X., Pek, P.P., Ong, M.E.H.: Risk stratification with extreme learning machine: a retrospective study on emergency department patients. Math. Probl. Eng. 2014, 6 (2014)

    MathSciNet  Google Scholar 

  17. Liang, N.Y., Saratchandran, P., Huang, G.B., Sundararajan, N.: Classification of mental tasks from EEG signals using extreme learning machine. Int. J. Neural Syst. 16(1), 29–38 (2006)

    Article  Google Scholar 

  18. Song, Y., Crowcroft, J., Zhang, J.: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Meth. 210(2), 132–146 (2012)

    Article  Google Scholar 

  19. Chen, F.L., Ou, T.Y.: Sales forecasting system based on gray extreme learning machine with Taguchi method in retail industry. Expert Syst. Appl. 38(3), 1336–1345 (2011)

    Article  Google Scholar 

  20. Zhu, C., Yin, J., Li, Q.: A stock decision support system based on ELM. In: Extreme Learning Machines 2013: Algorithms and Applications, pp. 67–79 (2014)

    Google Scholar 

  21. Liu, Z., Loo, C.K., Masuyama, N., Pasupa, K.: Recurrent kernel extreme reservoir machine for time series prediction. IEEE Access 6, 19583–19596 (2018)

    Article  Google Scholar 

  22. Al-Shayea, Q.K.: Artificial neural networks in medical diagnosis. Int. J. Comput. Sci. Issues 8(2), 150–154 (2011)

    Google Scholar 

  23. Takeda, T., Nakajima, H., Tsuchiya, N., Hata, Y.: A fuzzy human model for blood pressure estimation. In: Advanced Intelligent Systems, pp. 109–124 (2014)

    Chapter  Google Scholar 

  24. Li, X., Wu, S., Wang, L.: Blood pressure prediction via recurrent models with contextual layer. In: 26th International Conference on World Wide Web (2017)

    Google Scholar 

  25. Ghosh, S., Banerjee, A., Ray, N., Wood, P.W., Boulanger, P., Padwal, R.: Continuous blood pressure prediction from pulse transit time using ECG and PPG signals. In: Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT) (2016)

    Google Scholar 

  26. Golino, H.F., Amaral, L.S.D.B., Duarte, S.F.P., Gomes, C.M.A., Soares, T.D.J., Reis, L.A.D., Santos, J.: Predicting increased blood pressure using machine learning. J. Obes. 2014, 12 (2014)

    Article  Google Scholar 

  27. Wu, T.H., Pang, G.K., Kwong, E.W.: Predicting systolic blood pressure using machine learning. In: 7th International Conference on Information and Automation for Sustainability, Colombo (2014)

    Google Scholar 

  28. LaFreniere, D., Zulkernine, F., Barber, D., Martin, K.: Using machine learning to predict hypertension from a clinical dataset. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016)

    Google Scholar 

  29. Kwong, E.W.Y., Wu, H., Pang, G.K.H.: A prediction model of blood pressure for telemedicine. Health Inform. J. (2016). https://doi.org/10.1177/1460458216663025

    Article  Google Scholar 

  30. Chorowski, J., Wang, J., Zurada, J.M.: Review and performance comparison of SVM-and ELM-based classifiers. Neurocomputing 128, 507–516 (2014)

    Article  Google Scholar 

  31. Donders, A.R.T., Van Der Heijden, G.J., Stijnen, T., Moons, K.G.: A gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59(10), 1087–1091 (2006)

    Article  Google Scholar 

  32. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  33. Park, J.M., Kim, J.H.: Online recurrent extreme learning machine and its application to time-series prediction. In: 2017 International Joint Conference on Neural Networks (IJCNN) (2017)

    Google Scholar 

  34. Liu, Z., Loo, C.K., Masuyama, N., Pasupa, K.: Multiple steps time series prediction by a novel Recurrent Kernel Extreme Learning Machine approach. In: 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), Phuket (2017)

    Google Scholar 

  35. Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  Google Scholar 

  36. Ortín, S., Soriano, M.C., Pesquera, L., Brunner, D., San-Martín, D., Fischer, I., Mirasso, C.R., Gutiérrez, J.M.: A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci. Rep. 5, 14945 (2015)

    Article  Google Scholar 

  37. Tofallis, C.: A better measure of relative prediction accuracy for model selection and model estimation. J. Oper. Res. Soc. 66(8), 1352–1362 (2015)

    Article  Google Scholar 

  38. Pontius, R.G., Thontteh, O., Chen, H.: Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 15(2), 111–142 (2008)

    Article  MathSciNet  Google Scholar 

  39. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to extend our gratitude to the UM Grand Challenge Project ICT Project No GC003A-14HTM and the Developmental Cognitive Robot with Life-long Learning under Fund No. IF017-2018 for funding this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Kiong Loo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abrar, S., Tahir, G.A., Kakudi, H.A., Loo, C.K. (2020). A Personalized Blood Pressure Prediction Model Using Recurrent Kernel Extreme Reservoir Machine. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-12388-8_62

Download citation

Publish with us

Policies and ethics