Skip to main content

Myasthenia Gravis

  • Chapter
  • First Online:
Clinical Anesthesiology II
  • 932 Accesses

Abstract

A case of an emergency surgery in a 74-year-old man with free air in the abdomen highlights anesthetic challenges in the management of patients with myasthenia gravis. The underlying pathophysiology of myasthenia gravis is typically an autoimmune-mediated destruction of acetylcholine receptors in the neuromuscular junction, resulting in easy fatigability and weakness. The diagnosis of myasthenia gravis is established via electromyography studies and the identification of antibodies specific to myasthenia gravis. Medical treatment of myasthenia gravis involves steroids, immune modulators, plasmapheresis, and symptomatic treatment with acetylcholinesterase inhibitors. Many patients can achieve long-term cure with surgical thymectomy. Patients with myasthenia gravis present an anesthetic challenge because they can have other comorbid autoimmune diseases, compromised respiratory status, and atypical reactions to neuromuscular blockade, with resistance to succinylcholine and exquisite sensitivity to neuromuscular blockade. Potential anesthetic modifications include regional anesthesia and avoidance of neuromuscular blockade. When neuromuscular blockade is used, careful monitoring of and titration of muscle relaxation are paramount. Myasthenic patients are at high risk of requiring postoperative ventilation. Potential emergencies specific to myasthenia gravis are myasthenic crisis and cholinergic crisis, which can be difficult to distinguish and which may require emergent invasive airway management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baraka A. Anaesthesia and myasthenia gravis. Can J Anaesth. 1992;39:476–86.

    Article  CAS  Google Scholar 

  2. Hirsch NP. Neuromuscular junction in health and disease. Br J Anaesth. 2007;99:132–8.

    Article  CAS  Google Scholar 

  3. Dillon FX. Anesthesia issues in the perioperative management of myasthenia gravis. Semin Neurol. 2004;24:83–94.

    Article  Google Scholar 

  4. Juel VC. Evaluation of neuromuscular junction disorders in the electromyography laboratory. Neurol Clin NA. 2012;30:621–39.

    Article  Google Scholar 

  5. Sanders DB, Stålberg EV. AAEM minimonograph #25: single-fiber electromyography. Muscle Nerve. 1996;19:1069–83.

    Article  CAS  Google Scholar 

  6. Selvan VA. Single-fiber EMG: a review. Ann Indian Acad Neurol. 2011;14:64–7.

    Article  Google Scholar 

  7. Hoch W, et al. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7:365–8.

    Article  CAS  Google Scholar 

  8. Eisenkraft JB, Book WJ, Mann SM, Papatestas AE. Resistance to succinylcholine in myasthenia gravis: a dose-response study. Anesthesiology. 1988;69:760–2.

    Article  CAS  Google Scholar 

  9. Abel M, Eisenkraft JB. Anesthetic implications of myasthenia gravis. Mt Sinai J Med. 2002;69:31–7.

    PubMed  Google Scholar 

  10. Smith CE, Donati F, Bevan DR. Cumulative dose-response curves for atracurium in patients with myasthenia gravis. Can J Anaesth. 1989;36:402–6.

    Article  CAS  Google Scholar 

  11. Eisenkraft JB, Book WJ, Papatestas AE. Sensitivity to vecuronium in myasthenia gravis: a dose-response study. Can J Anaesth. 1990;37:301–6.

    Article  CAS  Google Scholar 

  12. Blichfeldt-Lauridsen L, Hansen BD. Anesthesia and myasthenia gravis. Acta Anaesthesiol Scand. 2012;56:17–22.

    Article  CAS  Google Scholar 

  13. Morgan JM, Barker I, Peacock JE, Eissa A. A comparison of intubating conditions in children following induction of anaesthesia with propofol and suxamethonium or propofol and remifentanil. Anaesthesia. 2007;62:135–9.

    Article  CAS  Google Scholar 

  14. McNeil IA, Culbert B, Russell I. Comparison of intubating conditions following propofol and succinylcholine with propofol and remifentanil 2 μg kg–1 or 4 μg kg–1. Br J Anaesth. 2000;85:623–5.

    Article  CAS  Google Scholar 

  15. Imani F, Alebouyeh M-R, Taghipour-Anvari Z, Faiz SH-R. Use of remifentanil and alfentanil in endotracheal intubation: a comparative study. Anesth Pain. 2011;1:1–5.

    Article  Google Scholar 

  16. Fotopoulou G, Theocharis S, Vasileiou I, Kouskouni E, Xanthos T. Management of the airway without the use of neuromuscular blocking agents: the use of remifentanil. Fundam Clin Pharmacol. 2011;26:72–85.

    Article  Google Scholar 

  17. Aouad MT, Karam VY, Mallat CE, et al. The effect of adjuvant drugs on the quality of tracheal intubation without muscle relaxants in children: a systematic review of randomized trials. Pediatr Anesth. 2012;22:616–26.

    Article  Google Scholar 

  18. Mikatti El N, Wilson A, Pollard BJ, Healy TE. Pulmonary function and head lift during spontaneous recovery from pipecuronium neuromuscular block. Br J Anaesth. 1995;74:16–9.

    Article  Google Scholar 

  19. Capron F, Fortier L-P, Racine SB, Donati FO. Tactile fade detection with hand or wrist stimulation using train-of-four, double-burst stimulation, 50-hertz tetanus, 100-hertz tetanus, and acceleromyography. Anesth Analg. 2006;102:1578–84.

    Article  Google Scholar 

  20. Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010;111:1–9.

    Google Scholar 

  21. Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II. Methods to reduce the risk of residual weakness. Anesth Analg. 2010;111:1–12.

    Article  Google Scholar 

  22. Murphy GS, et al. Intraoperative acceleromyography monitoring reduces symptoms of muscle weakness and improves quality of recovery in the early postoperative period. Anesthesiology. 2011;115:946–54.

    Article  Google Scholar 

  23. Todd MM, Hindman BJ, King BJ. The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department. Anesth Analg. 2014;119:323–31.

    Article  Google Scholar 

  24. Leventhal SR, Orkin FK, Hirsh RA. Prediction of the need for postoperative mechanical ventilation in myasthenia gravis. Anesthesiology. 1980;53:26–30.

    Article  CAS  Google Scholar 

  25. de Perrot M, Bril V, McRae K, Keshavjee S. Impact of minimally invasive trans-cervical thymectomy on outcome in patients with myasthenia gravis. Eur J Cardiothorac Surg. 2003;24:677–83.

    Article  Google Scholar 

  26. Eisenkraft JB, et al. Predicting the need for postoperative mechanical ventilation in myasthenia gravis. Anesthesiology. 1986;65:79–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sisti, D.J. (2019). Myasthenia Gravis. In: Benumof, J., Manecke, G. (eds) Clinical Anesthesiology II. Springer, Cham. https://doi.org/10.1007/978-3-030-12365-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12365-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12363-5

  • Online ISBN: 978-3-030-12365-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics