Skip to main content

Pulmonary Atresia with Intact Ventricular Septum

  • Chapter
  • First Online:
Clinical Anesthesiology II

Abstract

A newborn with previously unrecognized pulmonary atresia and intact ventricular septum (PA/IVS) presents a medical and surgical emergency if the ductus arteriosus closes, the only source of pulmonary blood flow in this form of congenital heart disease. PA/IVS is a rare form of congenital heart disease, and it is characterized by severe stenosis or atresia of the pulmonary valve or right ventricular outflow tract. Without another shunt such as a ventricular septal defect, the only source of pulmonary blood flow is a patent ductus arteriosus. The ductus can be kept open with a prostaglandin infusion until the infant is ready for surgical correction. Without ductus patency, the newborn will become progressively hypoxemic and ultimately die from cardiovascular collapse. Generally speaking, patients with PA/IVS have two potential surgical outcomes. If the right ventricle (RV) is not small or dysplastic, they may undergo primary repair and have a normal biventricular heart. If the RV is hypoplastic, then the patient will undergo surgical palliation. The first stage of palliation is the Norwood procedure, which establishes a parallel pulmonary and systemic circulation. The second stage is the bidirectional Glenn or hemi-Fontan, which unloads the ventricle and prepares the patient for the third and final stage of palliation, the Fontan procedure. With the Fontan procedure, all pulmonary blood flow flows passively through the lungs, while the single ventricle pumps only the systemic blood flow. Each stage of palliation presents unique challenges to the anesthesiologist, requiring techniques to modulate pulmonary vascular resistance and to optimize systemic oxygen delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferencz C, Rubin JD, Mccarter RJ, Brenner JI, Neill CA, Perry LW, Hepner SI, Downing JW. Congenital heart disease: prevalence at livebirth the Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121(1):31–6.

    Article  CAS  Google Scholar 

  2. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  Google Scholar 

  3. Šamánek M, Voříšková M. Congenital heart disease among 815,569 children born between 1980 and 1990 and their 15-year survival: a prospective Bohemia survival study. Pediatr Cardiol. 1999;20(6):411–7.

    Article  Google Scholar 

  4. Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116(6):e833–8.

    Article  Google Scholar 

  5. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr. 2008;153(6):807–13.

    Article  Google Scholar 

  6. Wu MH, Chen HC, Lu CW, Wang JK, Huang SC, Huang SK. Prevalence of congenital heart disease at live birth in Taiwan. J Pediatr. 2010;156(5):782–5.

    Article  Google Scholar 

  7. Khoshnood B, Lelong N, Houyel L, Thieulin AC, Jouannic JM, Magnier S, Delezoide AL, Magny JF, Rambaud C, Bonnet D, Goffinet F. Prevalence, timing of diagnosis and mortality of newborns with congenital heart defects: a population-based study. Heart. 2012;98(22):1667–73.

    Article  Google Scholar 

  8. Joelsson BM, Sunnegårdh J, Hanseus K, Berggren H, Jonzon A, Jögi P, Lundell B. The outcome of children born with pulmonary atresia and intact ventricular septum in Sweden from 1980 to 1999. Scand Cardiovasc J. 2001;35(3):192–8.

    Article  Google Scholar 

  9. Ishikawa T, Iwashima S, Ohishi A, Nakagawa Y, Ohzeki T. Prevalence of congenital heart disease assessed by echocardiography in 2067 consecutive newborns. Acta Paediatr. 2011;100(8):e55–60.

    Article  Google Scholar 

  10. Grossfeld PD, Lucas VW, Sklansky MS, Kashani IA, Rothman A. Familial occurrence of pulmonary atresia with intact ventricular septum. Am J Med Genet. 1997;72(3):294–6.

    Article  CAS  Google Scholar 

  11. Kutsche LM, Van Mierop LH. Pulmonary atresia with and without ventricular septal defect: a different etiology and pathogenesis for the atresia in the 2 types? Am J Cardiol. 1983;51(6):932–5.

    Article  CAS  Google Scholar 

  12. Daubeney PE, Wang D, Delany DJ, Keeton BR, Anderson RH, Slavik Z, Flather M, Webber SA. Pulmonary atresia with intact ventricular septum: predictors of early and medium-term outcome in a population-based study. J Thorac Cardiovasc Surg. 2005;130(4):1071–e1.

    Article  Google Scholar 

  13. Gardiner HM, Belmar C, Tulzer G, Barlow A, Pasquini L, Carvalho JS, Daubeney PE, Rigby ML, Gordon F, Kulinskaya E, Franklin RC. Morphologic and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J Am Coll Cardiol. 2008;51(13):1299–308.

    Article  Google Scholar 

  14. Calder AL, Peebles CR, Occleshaw CJ. The prevalence of coronary arterial abnormalities in pulmonary atresia with intact ventricular septum and their influence on surgical results. Cardiol Young. 2007;17(04):387–96.

    Article  Google Scholar 

  15. Daubeney PE, Delany DJ, Anderson RH, Sandor GG, Slavik Z, Keeton BR, Webber SA. Pulmonary atresia with intact ventricular septum: range of morphology in a population-based study. J Am Coll Cardiol. 2002;39(10):1670–9.

    Article  Google Scholar 

  16. Kipps AK, Powell AJ, Levine JC. Muscular infundibular atresia is associated with coronary ostial atresia in pulmonary atresia with intact ventricular septum. Congenit Heart Dis. 2011;6(5):444–50.

    Article  Google Scholar 

  17. Calder AL, Sage MD. Coronary arterial abnormalities in pulmonary atresia with intact ventricular septum. Am J Cardiol. 1987;59(5):436–42.

    Article  CAS  Google Scholar 

  18. Anderson RH, Spicer D. Fistulous communications with the coronary arteries in the setting of hypoplastic ventricles. Cardiol Young. 2010;20(S3):86–91.

    Article  Google Scholar 

  19. Dyamenahalli U, McCrindle BW, McDonald C, Trivedi KR, Smallhorn JF, Benson LN, Coles J, Williams WG, Freedom RM. Pulmonary atresia with intact ventricular septum: management of, and outcomes for, a cohort of 210 consecutive patients. Cardiol Young. 2004;14(03):299–308.

    Article  Google Scholar 

  20. Cheung EW, Richmond ME, Turner ME, Bacha EA, Torres AJ. Pulmonary atresia/intact ventricular septum: influence of coronary anatomy on single-ventricle outcome. Ann Thorac Surg. 2014;98(4):1371–7.

    Article  Google Scholar 

  21. Guleserian KJ, Armsby LB, Thiagarajan RR, Pedro J, Mayer JE. Natural history of pulmonary atresia with intact ventricular septum and right-ventricle–dependent coronary circulation managed by the single-ventricle approach. Ann Thorac Surg. 2006;81(6):2250–8.

    Article  Google Scholar 

  22. Freedom RM, Jaeggi E, Perrin D, Yoo SJ, Anderson RH. The “wall-to-wall” heart in the patient with pulmonary atresia and intact ventricular septum. Cardiol Young. 2006;16(01):18–29.

    Article  Google Scholar 

  23. Barr PA, Celermajer JM, Bowdler JD, Cartmill TB. Severe congenital tricuspid incompetence in the neonate. Circulation. 1974;49(5):962–7.

    Article  CAS  Google Scholar 

  24. Rudolph AM. Congenital cardiovascular malformations and the fetal circulation. Arch Dis Child Fetal Neonatal Ed. 2010;95(2):F132–6.

    Article  CAS  Google Scholar 

  25. Huhta JC, Cohen M, Gutgesell HP. Patency of the ductus arteriosus in normal neonates: two-dimensional echocardiography versus Doppler assessment. J Am Coll Cardiol. 1984;4(3):561–4.

    Article  CAS  Google Scholar 

  26. Kiserud T. Physiology of the fetal circulation. Semin Fetal Neonatal Med. 2005;10(6):493–503.

    Article  Google Scholar 

  27. Coggins KG, Latour A, Nguyen MS, Audoly L, Coffman TM, Koller BH. Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling the ductus arteriosus. Nat Med. 2002;8(2):91–2.

    Article  CAS  Google Scholar 

  28. Lewis AB, Freed MD, Heymann MA, Roehl SL, Kensey RC. Side effects of therapy with prostaglandin E1 in infants with critical congenital heart disease. Circulation. 1981;64(5):893–8.

    Article  CAS  Google Scholar 

  29. Lim DS, Kulik TJ, Kim DW, Charpie JR, Crowley DC, Maher KO. Aminophylline for the prevention of apnea during prostaglandin E1 infusion. Pediatrics. 2003;112(1):e27–9.

    Article  CAS  Google Scholar 

  30. McElhinney DB, Hedrick HL, Bush DM, Pereira GR, Stafford PW, Gaynor JW, Spray TL, Wernovsky G. Necrotizing enterocolitis in neonates with congenital heart disease: risk factors and outcomes. Pediatrics. 2000;106(5):1080–7.

    Article  CAS  Google Scholar 

  31. Ohye RG, Sleeper LA, Mahony L, Newburger JW, Pearson GD, Lu M, Goldberg CS, Tabbutt S, Frommelt PC, Ghanayem NS, Laussen PC. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med. 2010;362(21):1980–92.

    Article  CAS  Google Scholar 

  32. Khairy P, Fernandes SM, Mayer JE, Triedman JK, Walsh EP, Lock JE, Landzberg MJ. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117(1):85–92.

    Article  Google Scholar 

  33. Goldberg DJ, Paridon SM. Fontan circulation the search for targeted therapy. Circulation. 2014;130(23):1999–2001.

    Article  Google Scholar 

  34. Barnea O, Austin EH, Richman B, Santamore WP. Balancing the circulation: theoretic optimization of pulmonary/systemic flow ratio in hypoplastic left heart syndrome. J Am Coll Cardiol. 1994;24(5):1376–81.

    Article  CAS  Google Scholar 

  35. Tweddell JS, Hoffman GM, Fedderly RT, Berger S, Thomas JP, Ghanayem NS, Kessel MW, Litwin SB. Phenoxybenzamine improves systemic oxygen delivery after the Norwood procedure. Ann Thorac Surg. 1999;67(1):161–7.

    Article  CAS  Google Scholar 

  36. Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, Bailey JM, Akbary A, Kocsis JF, Kaczmarek R, Spray TL. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107(7):996–1002.

    Article  CAS  Google Scholar 

  37. Taeed R, Schwartz SM, Pearl JM, Raake JL, Beekman RH, Manning PB, Nelson DP. Unrecognized pulmonary venous desaturation early after Norwood palliation confounds Qp:Qs assessment and compromises oxygen delivery. Circulation. 2001;103(22):2699–704.

    Article  CAS  Google Scholar 

  38. Schwartz SM, Dent CL, Musa NL, Nelson DP. Single-ventricle physiology. Crit Care Clin. 2003;19(3):393–411.

    Article  Google Scholar 

  39. Davies RR, Pizarro C. Decision-making for surgery in the management of patients with univentricular heart. Front Pediatr. 2015;3:1–19.

    Article  Google Scholar 

  40. Rychik J. Forty years of the Fontan operation: a failed strategy. Semin Thorac Cardiovasc Surg Pediatr Card Surg. 2010;13(1):96–100.

    Article  Google Scholar 

  41. Khairy P, Poirier N, Mercier LA. Univentricular heart. Circulation. 2007;115(6):800–12.

    Article  Google Scholar 

  42. Anderson PA, Sleeper LA, Mahony L, Colan SD, Atz AM, Breitbart RE, Gersony WM, Gallagher D, Geva T, Margossian R, McCrindle BW. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol. 2008;52(2):85–98.

    Article  Google Scholar 

  43. Powell AJ, Gauvreau K, Jenkins KJ, Blume ED, Mayer JE, Lock JE. Perioperative risk factors for development of protein-losing enteropathy following a Fontan procedure. Am J Cardiol. 2001;88(10):1206–9.

    Article  CAS  Google Scholar 

  44. Gentles TL, Mayer JE Jr, Gauvreau K, Newburger JW, Lock JE, Kupferschmid JP, Jonas RA, Castañeda AR, Wernovsky G. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg. 1997;114(3):376–91.

    Article  CAS  Google Scholar 

  45. Julsrud PR, Weigel TJ, Van Son JA, Edwards WD, Mair DD, Driscoll DJ, Danielson GK, Puga FJ, Offord KP. Influence of ventricular morphology on outcome after the Fontan procedure. Am J Cardiol. 2000;86(3):319–23.

    Article  CAS  Google Scholar 

  46. Tobias JD, Lynch A, Garrett J. Alterations of end-tidal carbon dioxide during the intrahospital transport of children. Pediatr Emerg Care. 1996;12(4):249–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sisti, D.J., Rafaat, K.T. (2019). Pulmonary Atresia with Intact Ventricular Septum. In: Benumof, J., Manecke, G. (eds) Clinical Anesthesiology II. Springer, Cham. https://doi.org/10.1007/978-3-030-12365-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12365-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12363-5

  • Online ISBN: 978-3-030-12365-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics