Skip to main content

Sodium Channel Antagonists

  • Chapter
  • First Online:
  • 183 Accesses

Abstract

Voltage-gated sodium channels (Nav) that initiate electrical signals in excitable nerve and muscle cells are molecular targets for drugs and acquire disease mutations. These ion channels were first discovered in 1952 by researchers Hodgkin and Huxley who published landmark papers in The Journal of Physiology. The three key features of sodium channels discovered were voltage-dependent activation, rapid inactivation, and selective ion conductance. Since that time, a total of nine sodium channels have been discovered. The Nav isoforms of most interest as analgesic targets are Nav 1.3, Nav 1.7, Nav 1.8, and Nav 1.9 as they play specific roles in the neurobiology of pain and serve as potential analgesic targets. Knowledge of these channels’ structure and function, as well as their alterations in chronic pain, are vital to understanding how current sodium channel antagonists work but also for future drug developments. Currently, sodium channel antagonists fall into four pharmacological classes including anti-arrhythmics, anticonvulsants, local anesthetics, and antidepressants (discussed in another chapter). The sodium channel antagonists discussed in this chapter are considered nonselective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Akopian AN, et al. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996;379:257–62.

    Article  CAS  Google Scholar 

  2. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, et al. The tetrodotoxin resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci. 1999;2:541–8.

    Article  CAS  Google Scholar 

  3. Cao L, Nitzsche N, McDonnell A, Alexandrou A, Saintot P-P, Loucif AJC, Brown AR, Young G, Mis M, Randall A, Waxman SG, Stanley P, Kirby S, Tarabar S, Gutteridge A, Butt R, McKernan RM, Whiting R, Ali Z, Bilsland J, Stevens EB. Pharmacological reversal of pain phenotype in iPSC-derived sensory neurons and human subjects with inherited erythromelalgia. Sci Transl Med. 2016;8(335):335ra56. PMID: 27099175 (first demonstration of proof-of-principle that Nav1.7 blocker can attenuate pain in humans).

    Article  Google Scholar 

  4. Cummins TR, Waxman SG. Down regulation of tetrodotoxin-resistant sodium currents and up-regulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. iJ Neurosci. 1997;17:3503–14.

    Article  CAS  Google Scholar 

  5. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG. A novel persistent tetrodotoxin-resistant sodium current in small primary sensory neurons. J Neurosci. 1999;19:RC43.

    Article  CAS  Google Scholar 

  6. de León-Casasola OA, Mayoral V. The topical 5% lidocaine medicated plaster in localized neuropathic pain: a reappraisal of the clinical evidence. J Pain Res. 2016;12(9):67–79. https://doi.org/10.2147/JPR.S99231. eCollection 2016.

    Article  Google Scholar 

  7. Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7(Suppl 1):S3–S12.

    Article  CAS  Google Scholar 

  8. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. Sodium channels in normal and pathological pain. Ann Rev Neurosci. 2010;33:325–47. PMID: 20367448 (Overview of Na channels in pain).

    Article  CAS  Google Scholar 

  9. Dib-Hajj SD, Yang Y, Black JA, Waxman SG. The NaV1.7 sodium channel: from molecule to man. Nat Rev Neurosci. 2013;14(1):49–62. PMID: 23232607 (the most complete review on Nav1.7 and pain).

    Article  CAS  Google Scholar 

  10. Dib-Hajj SD, Black JA, Waxman SG. NaV1.9: a sodium channel linked to human pain. Nat Rev Neurosci. 2015;16:511–9. PMID 26243570 (the most complete review on Nav1.9 and pain).

    Article  CAS  Google Scholar 

  11. Faber CG, Lauria G, Merkies ISJ, Cheng X, Han C, Ahn H-S, Persson A-K, Hoeijmakers JGJ, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function NaV1.8 mutations in painful neuropathy. Proc Natl Acad Sci. 2012;109:19444–9. PMID: 23115331.

    Article  CAS  Google Scholar 

  12. Finnerup NB, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–73.

    Article  CAS  Google Scholar 

  13. Geha P, Yang Y, Estacion M, Schulman BR, Tokuno H, Apkarian AV, Dib-Hajj SD, Waxman SG. Pharmacotherapy for pain in a family with inherited erythromelalgia guided by genomic analysis and functional profiling. JAMA Neurol. 2016;73(6):659–767. https://doi.org/10.1001/jamaneurol.2016.0389. PMID: 27088781. (first study using pharmacogenomics to treat patients in a personalized, "precidion": manner with a Na channel blocker).

    Article  PubMed  Google Scholar 

  14. Han C, Huang J, Waxman SG. Sodium channel NaV1.8: emerging links to human disease. Neurology. 2016;86:473–83. PMID 26747884.

    Article  CAS  Google Scholar 

  15. Levinson SR, et al. The role of sodium channels in chronic pain. Muscle Nerve. 2012;46(2):155–65.

    Article  CAS  Google Scholar 

  16. Mao J, Chen LL. Systemic lidocaine for neuropathic pain relief. Pain. 2000;87(1):7–17.

    Article  CAS  Google Scholar 

  17. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med. 2004;10(7):685–92.

    Article  CAS  Google Scholar 

  18. Sidhu HS, Sadhotra A. Current status of the new antiepileptic drugs in chronic pain. Front Pharmacol. 2016;7:276. https://doi.org/10.3389/fphar.2016.00276. Published online 2016 Aug 25. PMCID: PMC4996999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sommer C, Cruccu G. Topical treatment of peripheral neuropathic pain: applying the evidence. J Pain Symptom Manag. 2017;53:614–29.

    Article  Google Scholar 

  20. Tan A, Samad O, Dib-Hajj SD, Waxman SG. Virus-mediated knockdown of Nav1.3 in dorsal root ganglia of STZ-induced diabetic rats alleviates tactile allodynia. Mol Med. 2015;21:544–52. PMID 26101954.

    Article  CAS  Google Scholar 

  21. Tremont-Lukats IW, Challapalli V, McNicol ED, et al. Systemic administration of local anesthetics to relieve neuropathic pain: a systematic review and meta-analysis. Anesth Analg. 2005;101:1738–49.

    Article  CAS  Google Scholar 

  22. Wood JN, et al. Voltage-gated sodium channels and pain pathways. J Neurobiol. 2004;61(1):55–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine D. Travnicek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Travnicek, K.D. (2019). Sodium Channel Antagonists. In: Deer, T., Pope, J., Lamer, T., Provenzano, D. (eds) Deer's Treatment of Pain. Springer, Cham. https://doi.org/10.1007/978-3-030-12281-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12281-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12280-5

  • Online ISBN: 978-3-030-12281-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics