Skip to main content

Approximation by Trigonometric Polynomials in Stechkin Majorant Spaces

  • Chapter
  • First Online:
Book cover Topics in Classical and Modern Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 408 Accesses

Abstract

In this paper we consider Stechkin majorant spaces \(\mathcal E_p(\varepsilon )\) such that \(f\in \mathcal E_p(\varepsilon )\) has best trigonometric approximations E n(f)p in \(L^p_{2\pi }\), 1 ≤ p ≤, satisfying the inequality E n(f)p ≤  n, \(n\in \mathbb Z_+\), where C does not depend on n, ε n 0. We prove that the trigonometric system is a basis in these spaces. The general estimates of best approximation in \(\mathcal E_p(\varepsilon )\) including Jackson and Bernstein inequalities are established. For \(\tau _n(f)(x)=\sum ^n_{k=0}a_{nk}S_k(f)(x)\), where S k(f) are partial Fourier sums of f and {a nk : n ≥ 0, 0 ≤ k ≤ n} satisfies certain condition of generalized monotonicity type, some bounds for the degree of approximation \(\|f-\tau _n(f)\|{ }_{\mathcal E_p(\varepsilon )}\) are obtained. The sharpness of such results is proved under some restrictions. Also some applications of obtained results to the approximation in Hölder–Lipschitz spaces are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.K. Bary, A Treatise on Trigonometric Series, vols. 1–2 (Macmillan, New York, 1964)

    MATH  Google Scholar 

  2. N.K. Bary, S.B. Stechkin, Best approximations and differential properties of two conjugate functions. Trudy Moskov. Mat. Obsch. 5, 483–522 (1956, in Russian)

    Google Scholar 

  3. P.L. Butzer, K. Scherer, On the fundamental approximation theorems of D. Jackson, S.N. Bernstein and theorems of M. Zamansky and S.B. Stec̆kin. Aequationes Math. 3, 170–185 (1969)

    Google Scholar 

  4. U. Değer, A note on the degree of approximation by matrix means in the generalized Hölder metric. Ukr. Math. J. 68(4), 545–556 (2016)

    Article  MathSciNet  Google Scholar 

  5. R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993)

    Book  Google Scholar 

  6. T.V. Iofina, Approximation by Nörlund-Voronoi means in the Hölder metric. Anal. Math. 37(1), 1–13 (2011, in Russian)

    Google Scholar 

  7. T.V. Iofina, S.S. Volosivets, On the degree of approximation by means of Fourier-Vilenkin series in Hölder and L p norm. East J. Approx. 15(2), 143–158 (2009)

    MathSciNet  MATH  Google Scholar 

  8. B.S. Kashin, A.A. Saakyan, Orthogonal Series. Translations of Mathematical Monographs, vol. 75 (AMS, Providence, 1989)

    Google Scholar 

  9. Yu. Kolomoitsev, J. Prestin, Sharp estimates of approximation of periodic functions in Hölder spaces. J. Approx. Theory 200(1), 68–91 (2015)

    Article  MathSciNet  Google Scholar 

  10. V.G. Krotov, Note on the convergence of Fourier series in the spaces \(\varLambda ^p_\omega \). Acta Sci. Math. (Szeged) 41, 335–338 (1979)

    Google Scholar 

  11. L. Leindler, Generalizations of Prössdorf’s theorems. Stud. Sci. Math. Hung. 14, 431–439 (1979)

    MATH  Google Scholar 

  12. L. Leindler, A relaxed estimate of the degree of approximation by Fourier series in generalized Hölder metric. Anal. Math. 35(1), 51–60 (2009)

    Article  MathSciNet  Google Scholar 

  13. L. Leindler, A. Meir, V. Totik, On approximation of continuous functions in Lipshitz norms. Acta Math. Hungar. 45(3–4), 441–443 (1985)

    Article  MathSciNet  Google Scholar 

  14. R.N. Mohapatra, B. Szal, On trigonometric approximation of functions in the L q-norm. Demonstr. Math. 51(1), 17–26 (2018)

    Article  MathSciNet  Google Scholar 

  15. J. Prestin, S. Prössdorf, Error estimates in generalized Hölder-Zygmund norms. Zeit. Anal. Anwend. 9(4), 343–349 (1990)

    Article  Google Scholar 

  16. S. Prössdorf, Zur Konvergenz der Fourierreihen Hölderstetiger Funktionen. Math. Nachr. 69, 7–14 (1975)

    Article  MathSciNet  Google Scholar 

  17. T.V. Radoslavova, Decrease orders of the L p-moduli of continuity (0 < p < ). Anal. Math. 5, 219–234 (1979)

    Article  MathSciNet  Google Scholar 

  18. S.B. Stechkin, On the order of best approximations of continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 15(3), 219–242 (1951, in Russian)

    Google Scholar 

  19. S.B. Stechkin, On the approximation of periodic functions by Fejér means. Trudy Mat. Inst. Steklov 62, 48–60 (1961, in Russian). English transl. Am. Math. Soc. Transl. (2) 28, 269–282 (1963)

    Google Scholar 

  20. S. Tikhonov, Trigonometric series with general monotone coefficients. J. Math. Anal. Appl. 326(1), 721–735 (2007)

    Article  MathSciNet  Google Scholar 

  21. A.F. Timan, Theory of Approximation of Functions of a Real Variable (Macmillan, New York, 1963)

    MATH  Google Scholar 

  22. V.V. Zhuk, Approximating periodic functions in Hölder type metrics by Fourier sums and Riesz means. J. Math. Sci. (N.Y.) 150(3), 2045–2055 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to anonymous referee for valuable suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volosivets, S.S. (2019). Approximation by Trigonometric Polynomials in Stechkin Majorant Spaces. In: Abell, M., Iacob, E., Stokolos, A., Taylor, S., Tikhonov, S., Zhu, J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12277-5_21

Download citation

Publish with us

Policies and ethics