Skip to main content

Fixed Volume Discrepancy in the Periodic Case

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The smooth fixed volume discrepancy in the periodic case is studied here. It is proved that the Frolov point sets adjusted to the periodic case have optimal in a certain sense order of decay of the smooth periodic discrepancy. The upper bounds for the r-smooth fixed volume periodic discrepancy for these sets are established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Aistleitner, A. Hinrichs, D. Rudolf, On the size of the largest empty box amidst a point set. Discret. Appl. Math. 230, 146–150 (2017). arXiv:1507.02067v3 [cs.CG] 18 June 2017

    Article  MathSciNet  Google Scholar 

  2. J. Beck, W. Chen, Irregularities of Distribution (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  3. D. Bilyk, M. Lacey, On the small ball inequality in three dimensions. Duke Math J. 143, 81–115 (2008)

    Article  MathSciNet  Google Scholar 

  4. D. Bilyk, M. Lacey, A. Vagharshakyan, On the small ball inequality in all dimensions. J. Funct. Anal. 254, 2470–2502 (2008)

    Article  MathSciNet  Google Scholar 

  5. A. Dumitrescu, M. Jiang, On the largest empty axis-parallel box amidst n points. Algorithmica 66, 225–248 (2013)

    Article  MathSciNet  Google Scholar 

  6. D. Dung, V.N. Temlyakov, T. Ullrich, Hyperbolic cross approximation (2016). arXiv:1601.03978v2 [math.NA] 2 Dec 2016

    Google Scholar 

  7. K.K. Frolov, Upper bounds on the error of quadrature formulas on classes of functions. Dokl. Akad. Nauk SSSR 231, 818–821 (1976). English transl. in Soviet Math. Dokl. 17 (1976)

    Google Scholar 

  8. J. Matousek, Geometric Discrepancy (Springer, Berlin, 1999)

    Book  Google Scholar 

  9. V.K. Nguyen, M. Ullrich, T. Ullrich, Change of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube (2015). arXiv:1511.02036

    Google Scholar 

  10. H. Niederreiter, C. Xing, Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2, 241–273 (1996)

    Article  MathSciNet  Google Scholar 

  11. G. Rote, F. Tichy, Quasi-Monte Carlo methods and the dispersion of point sequences. Math. Comput. Model. 23, 9–23 (1996)

    Article  MathSciNet  Google Scholar 

  12. D. Rudolf, An upper bound of the minimal dispersion via delta covers (2017). arXiv:1701.06430v2 [csCG] 27 Jun 2017

    Google Scholar 

  13. W.M. Schmidt, Irregularities of distribution VII. Acta Arith. 21, 45–50 (1972)

    Article  MathSciNet  Google Scholar 

  14. J. Sosnovec, A note on minimal dispersion of point sets in the unit cube (2017). arXiv:1707.08794v1 [csCG] 27 Jul 2017

    Google Scholar 

  15. V.N. Temlyakov, Approximation of Periodic Functions (Nova Science Publishers, Inc., New York, 1993)

    MATH  Google Scholar 

  16. V.N. Temlyakov, On error estimates for cubature formulas. Trudy Matem. Inst. Steklova 207, 326–338 (1994). English translation in: Proc. Steklov Inst. Math. 6, 299–309 (1995)

    Google Scholar 

  17. V.N. Temlyakov, Cubature formulas and related questions. J. Complexity 19, 352–391 (2003)

    Article  MathSciNet  Google Scholar 

  18. V.N. Temlyakov, Dispersion of the Fibonacci and the Frolov point sets (2017). arXiv:1709.08158v2 [math.NA] 4 Oct 2017

    Google Scholar 

  19. V.N. Temlyakov, Fixed volume discrepancy in the periodic case (2017). arXiv:1710.11499v1 [math.NA] 30 Oct 2017

    Google Scholar 

  20. M. Ullrich, A lower bound for the dispersion on the torus (2015). arXiv:1510.04617v1 [csCC] 15 Oct 2015

    Google Scholar 

  21. M. Ullrich, On Upper error bounds for quadrature formulas on function classes by K. K. Frolov, in Monte Carlo and Quasi-Monte Carlo Methods, ed. by R. Cools, D. Nuyens. Springer Proceedings in Mathematics & Statistics, vol. 163, pp. 571–582 (2016). arXiv:1404.5457

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the Erwin Schrödinger International Institute for Mathematics and Physics (ESI) at the University of Vienna for support. This paper was started when the author participated in the ESI-Semester “Tractability of High Dimensional Problems and Discrepancy,” September 11–October 13, 2017. The work was supported by the Russian Federation Government Grant No. 14.W03.31.0031.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Temlyakov, V.N. (2019). Fixed Volume Discrepancy in the Periodic Case. In: Abell, M., Iacob, E., Stokolos, A., Taylor, S., Tikhonov, S., Zhu, J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12277-5_20

Download citation

Publish with us

Policies and ethics