Skip to main content

On de Boor–Fix Type Functionals for Minimal Splines

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This paper considers minimal coordinate splines. These splines as a special case include well-known polynomial B-splines and share most properties of B-splines (linear independency, smoothness, nonnegativity, etc.). We construct a system of dual functionals biorthogonal to the system of minimal splines. The obtained results are illustrated with an example of a polynomial generating vector function, which leads to the construction of B-splines and the de Boor–Fix functionals. For nonpolynomial generating vector functions we give formulas for the construction of nonpolynomial splines and the dual de Boor–Fix type functionals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Marsden, I.J. Schoenberg, On variation diminishing spline approximation methods. Mathematica (Cluj) 8/31(1), 61–82 (1966)

    Google Scholar 

  2. C. de Boor, G.J. Fix, Spline approximation by quasiinterpolants. J. Approx. Theory 8(1), 19–45 (1973)

    Article  MathSciNet  Google Scholar 

  3. T. Lyche, L.L. Schumaker, Local spline approximation methods. J. Approx. Theory 15(N4), 294–325 (1975)

    Article  MathSciNet  Google Scholar 

  4. S.B. Stechkin, Y.N. Subbotin, Splines in Computational Mathematics (Nauka, Moscow, 1976, in Russian)

    Google Scholar 

  5. Y.S. Zav’yalov, B.I. Kvasov, V.K. Miroshnichenko, Methods of Spline Functions (Nauka, Moscow, 1980, in Russian)

    Google Scholar 

  6. L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981)

    MATH  Google Scholar 

  7. Y.K. Dem’yanovich, Local Approximation on a Manifold and Minimal Splines (St. Petersburg State University, St. Petersburg, 1994, in Russian)

    Google Scholar 

  8. I.G. Burova, Y.K. Dem’yanovich, Minimal Splines and Their Applications (St. Petersburg State University, St. Petersburg, 2010, in Russian)

    Google Scholar 

  9. A.A. Makarov, On example of circular arc approximation by quadratic minimal splines. Poincare J. Anal. Appl. 2018(2(II)), Special Issue (IWWFA-III, Delhi), 103–107 (2018)

    Google Scholar 

  10. A.A. Makarov, On approximation by hyperbolic splines. J. Math. Sci. 240(6), 822–832 (2019)

    Article  MathSciNet  Google Scholar 

  11. A.A. Makarov, Biorthogonal systems of functionals and decomposition matrices for minimal splines. J. Math. Sci. 187(1), 57–69 (2012)

    Article  MathSciNet  Google Scholar 

  12. A.A. Makarov, On functionals dual to minimal splines. J. Math. Sci. 224(6), 942–955 (2017)

    Article  MathSciNet  Google Scholar 

  13. A.A. Makarov, Construction of splines of maximal smoothness. J. Math. Sci. 178(6), 589–604 (2011)

    Article  MathSciNet  Google Scholar 

  14. A.A. Makarov, Piecewise-continuous spline-wavelets on a nonuniform mesh. Trudy SPIIRAN 14, 103–131 (2010, in Russian)

    Google Scholar 

  15. A.A. Makarov, On wavelet decomposition of spaces of first order splines. J. Math. Sci. 156(4), 617–631 (2009)

    Article  MathSciNet  Google Scholar 

  16. A.A. Makarov, Algorithms of wavelet compression of linear spline spaces Vestn. St. Petersbg. Univ. Math. 45(2), 82–92 (2012)

    Article  Google Scholar 

  17. G. Wang, Q. Chen, M. Zhou, NUAT-B-spline curves. Comput. Aided Geom. Des. 21(2), 193–205 (2004)

    Article  MathSciNet  Google Scholar 

  18. A.A. Makarov, Spline wavelet compression on segment, in Selected Chapters of Discrete Harmonic Analysis and Geometric Modeling. P. 2, ed. by V.N. Malozemov (St. Petersburg State University, St. Petersburg, 2014, in Russian), pp. 429–438

    Google Scholar 

  19. A.A. Makarov, Knot insertion and knot removal matrices for nonpolynomial splines. Numer. Methods Program. 13(1), 74–86 (2012, in Russian)

    Google Scholar 

  20. O. Kosogorov, A. Makarov, On some piecewise quadratic spline functions, in Numerical Analysis and Its Applications. NAA 2016, ed. by I. Dimov, I. Faragó, L. Vulkov. Lecture Notes in Computer Science, vol. 10187 (2017), pp. 448–455

    Google Scholar 

  21. Y.K. Dem’yanovich, A.A. Makarov, Necessary and sufficient nonnegativity conditions for second-order coordinate trigonometric splines. Vestnik St. Petersburg Univ. Math. 50(1), 5–10 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The reported study was funded by a grant of the President of the Russian Federation (MD-2242.2019.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Makarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulikov, E.K., Makarov, A.A. (2019). On de Boor–Fix Type Functionals for Minimal Splines. In: Abell, M., Iacob, E., Stokolos, A., Taylor, S., Tikhonov, S., Zhu, J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-12277-5_13

Download citation

Publish with us

Policies and ethics