Skip to main content

Certain Aspects of Problems with Non Homogeneous Reactions

  • Chapter
  • First Online:
  • 720 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 200))

Abstract

This note reviews certain aspects of systems with reaction terms which are non homogeneous, this is nonlinearities such that their value at zero are different from zero. This type of reactions are frequent in problems where temperature is a relevant variable, for example strongly exothermic chemical reaction like a combustion chamber, or a bio-reactor. The topics to be reviewed are far from covering all the aspects to be analyzed in these problems, but despite this they are interesting for a broad audience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguirre, P., Catañeda, A., Omón Arancibia, A. , Robledo, G.: On a planar system from chemical reacting modelling: a new geometrically/qualitative description (submitted manuscript)

    Google Scholar 

  2. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. In: Cambridge Studies in Advance Mathematics, vol. 34. Cambridge University Press (1993)

    Google Scholar 

  3. Aris, R.: Some characteristic nonlinearities of chemical reaction engineering. In: Bishop, A.R., Campbell, D.K., Nicolaenko , B. (eds.) Nonlinear Problems: Present and Future. North-Holland (1982)

    Google Scholar 

  4. Aronson, D.G., Weinberger, H.F.: Multidimensiona diffusion arraising in population genetic. Adv. Math. 30, 33–76 (1978)

    Google Scholar 

  5. Ash, E., Eaton, B., Gustafson, K.: Counting the number of solutions in combustion and reactive flow problems. Z. angew. Math. Phys. 41, 558–578 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Bandle, C.: Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems. Arch. Rat. Mech. Anal. 58, 219–238 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Bazley, N., Wake, G.: The disappearence of criticality in the Theory of Thermal Ignition. Z. angew. Math. Phys. 29, 971–975 (1978)

    Google Scholar 

  8. Bebernes, J., Eberly, D.: Mathematical problems from combustion theory. In: Applied Mathematical Sciences, vol. 83. Springer, Berlin (1989)

    Google Scholar 

  9. Bellman, R., Bentsman, J., Meerkov, S.: Vibrational control of systems with Arrhenius dymanics. J. Math. Ann. Appl. 91, 152–191 (1983)

    MATH  Google Scholar 

  10. Berestycki, H., Nicolaneko, B., Scheurer, B.: Travling wave solutions to a combustion model and their singular limit. SIAM J. Math. Anal. 16, 1207–1242 (1985)

    MathSciNet  Google Scholar 

  11. Berestycki, H., Larrouturou, B., Joquejoffre, J.M.: Mathematical investigation of the cold boundary difficulty. In: Dynamical issues in combustion theory, the IMA volumes in Applied Mathematics, vol. 35. Springer, Berlin (1987)

    Google Scholar 

  12. Berestycki, H., Larroauturou, B., Nirenberg, L.: A nonlinear elliptic problem describing the propagation of curved premixed flame. In: Mathematical Modeling in Combustion Theory, NATO Advance Research Work Series E. Applied Science, vol. 140 (1987)

    Google Scholar 

  13. Berger, M., Berger, M.: Perspectives in Nonlinearities: An introduction to Nonlinear analysis. In: Benjamin Cummings Mathematical Lectures Notes (1968)

    Google Scholar 

  14. Bers, L., John, F., Schechter, M.: Partial Differential Equations. Wiley & Sons. Inc, New York (1964)

    MATH  Google Scholar 

  15. Boddington, T., Gray, P., Wake, G.: Criteria for thermal explosions with and without reactant consuption. Proc. R. Soc. Lond. A 357, 403–422 (1977)

    Google Scholar 

  16. Börsch-Supan, W.: On the stability of bifurcation branches in thermal ignition. Z. angew. Math. Phys. 35, 332–344 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Brauner, C.M., Nicolaenko, B.: On nonlinear eigenvalue problems which extend into free boundary problems. In: Bardos, C., Lasry, J.M., Schatzman, M. (eds.) Lecture Notes in Mathematics, vol. 782, Chapter 4, pp. 61–100 (1980)

    Google Scholar 

  18. Buckmaster, J., Ludford, G.S.S.: Theory of Laminar flames. In: Cambridge Monographs on Mechanics and Mathematics, Cambridge University Press (1982)

    Google Scholar 

  19. Cohen, D.: Multiple solutions of nonlinear partial differential equations. Lecture Notes in Maths, vol. 322. Springer, Berlin (1973)

    Google Scholar 

  20. Crandall, M., Ravinowitz, P.H.: Bifurcation from a sinple eigenvalue. J. Func. Anal. 8, 321–340 (1971)

    Google Scholar 

  21. Crandall, M., Ravinowitz, P.H.: Bifurcation, perturbation of simpe eigenvalues and stability. Arch. Rat. Mech. Appl. 8, 161–180 (1973)

    Google Scholar 

  22. Dancer, N.: On the structure of solutions of an equation in catalysis theory when a parameter is large. J. Diff. Equations 37, 404–437 (1980)

    MathSciNet  MATH  Google Scholar 

  23. Deimling, K.: Nonlinear Functional Analysis, 2nd edn. Dover, New York (2010)

    MATH  Google Scholar 

  24. Dold, J.: Analysis of the early stage of thermal runaway. Q. J. Mech. Appl. Math. 38, 361–387 (1985)

    MATH  Google Scholar 

  25. Du, Y., Lou, Y.: Proof of a conjecture for the perturbed Gelfand Equation from Combustion theory. J. Diff. Equations 173, 213–230 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Du, Y.: Exact multiplicity and S-shape bifurcation curve for some semilinear elliptic problems from combustion theory. SIAM J. Math. Anal. 32–4, 707–733 (2000)

    MATH  Google Scholar 

  27. Dupaigne, L.: Stable solutions of elliptic partial equations. In: Monographs and Surveys in Pure and Applied Mathematics-143. Chapman & Hall (2007)

    Google Scholar 

  28. Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937)

    MATH  Google Scholar 

  29. Franz-Kamenetskii, D.A.: Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press (english translation from the U.S.S.R. Academy of Science edition from 1947) (1955)

    Google Scholar 

  30. Friedman, A., McLoud, B.: Blow up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34, 425–447 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Fujita, H.: On the nonlinear equations \( \Delta u + \lambda e^{u} = 0 \) and \( {\displaystyle \frac{\partial u}{\partial t} = \Delta u + \lambda e^{u} }\). Bull. Am. Math. Soc. 75, 132–135 (1969)

    MATH  Google Scholar 

  32. Gavallas, G.: Nonlinear Differential Equations of Chemically Reacting Systems. In: Springer Tracts in Natural Philosophy, vol. 17 (1969)

    Google Scholar 

  33. Gelfand, I.M.: Some problems in the theory of quasilinear equations. Amer. Math. Soc. Trans. 29, 295–381 (1963)

    MathSciNet  Google Scholar 

  34. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related problems via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    MathSciNet  MATH  Google Scholar 

  35. Giovangigli, V.: Modélisation numérique de la chimie complexe. In: Berestycki, H., Brauner, C.-M., Clavin, P., Schidt-Lainé, C. (eds.) Images del Mathématiques, Modélisation de la Combustion. CNRS-France (1996)

    Google Scholar 

  36. Joulin, G., Vidal, P.: An introduction to instabilities of flames, shocks and detonations. In: Godréche, C., Manneville, P. (eds.) Hydrodynamics and Nonlinear Instabilities. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  37. Joseph, D.D., Lundgrem, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Rat. Mech. Anal. 49, 241–269 (1973)

    MathSciNet  Google Scholar 

  38. Kapila, A.: Reactive-diffusive systems with Arrhenius kinetics: dynamics of ignition. SIAM J. Appl. Math. 39, 21–36 (1980)

    MathSciNet  MATH  Google Scholar 

  39. Kapila, A.: Asymptotic Treatment of Chemically Reacting Systems. Applied Mathematical Series PITMAN (1983)

    Google Scholar 

  40. Kassoy, D.R.: Extremely rapid transient phenomena in combustion, ignition and explosion. In: O’Malley, R.E. (ed.)Asymptotic Methods and Singular Perturbations, vol. X, SIAM-AMS Proceedings (1976)

    Google Scholar 

  41. Keller, H.B.: Some positone problems suggested by nonlinear heat generation. In: Keller, H.B., Altman, S. (eds.) Bifurcation Theory and Nonlinear Eigenvalue Problems, pp. 217–256. Benjamin, New York (1969)

    Google Scholar 

  42. Keener, J.P., Keller, H.B.: Positive solutions of convex nonlinear eigenvalue problems. J. Diff. Eq. 16, 103–125 (1974)

    MathSciNet  MATH  Google Scholar 

  43. Kolmogorov, A.N., Petrovskii, I., Piscounoff, N.: Étude de l’equation de la diffision avec croissance de la quantité de matiére et son aplicatión a un probleme biologique. Bull. Univ. Moscow, Ser. Internac., Sec A I, pp. 1–25 (1937)

    Google Scholar 

  44. Krasnoselskii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equation. Pergamon Press, New York (1964)

    Google Scholar 

  45. Lacey, A., Tzanetis, D.: Global unbounded solutions to a parabolic equation. J. Diff. Eq. 101, 80–102 (1993)

    MathSciNet  MATH  Google Scholar 

  46. Leray, J.: Sur le mouvement d’un liquide visqueaux emplissant l’espace. Acta Mathematica 63, 193–248 (1934)

    MathSciNet  MATH  Google Scholar 

  47. Liñán, A., Williams, F.: Fundamental Aspects of Combustion. In: The Oxford Engineering Science Series, vol. 33. Oxford University Press (1993)

    Google Scholar 

  48. Lions, P.-L.: Asymptotic behavior of some nonlinear heat equations. Physica 5D, 293–306 (1982)

    MathSciNet  MATH  Google Scholar 

  49. Lions, P.-L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24(4), 441–467 (1982)

    MathSciNet  MATH  Google Scholar 

  50. Liouville, J.: Sur l’equation aux dérivées parielles \( {\displaystyle \frac{\partial ^{2} ln \lambda }{\partial u \partial v} \pm 2 \, \lambda \, a^{2} = 0 } \). J. de Math. 18, 71–72 (1853)

    Google Scholar 

  51. Matano, H.: Asymptotic behaviour and stability of solution of semilinear diffusion equations. Publ. RIMS, Kyoto Univ. 15, 401–454 (1979)

    MATH  Google Scholar 

  52. Murray, J.D.: Lectures on Nonlinear Differential Equations Models in Biology. Oxford University Press, Oxford (1978)

    Google Scholar 

  53. Ni, W.-M.: On the asymptotic behaviour of solutions of certain quasilinear parabolic equations. J. Diff. Eqs. 54, 97–120 (1984)

    MATH  Google Scholar 

  54. Omón Arancibia, A.: On the stability for initial conditions for the parabolic Gelfand Problem. J. Math. Eng. 92(1), 167–184 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Omón Arancibia, A.: Steady and evolution perturbed Gelfand problems: some aspects on taking the limit (unpublished manuscript)

    Google Scholar 

  56. Parter, S.V.: Solutions of a differential equation arising in chemical reactor processes. SIAM J. Appl. Math. 26–4, 687–716 (1974)

    MathSciNet  MATH  Google Scholar 

  57. Poore, A.: A model equation arising from chemical reactor theory Arch. Rat. Mech. Anal. 52–4, 358–388 (1973)

    MathSciNet  MATH  Google Scholar 

  58. Sattinger, D.H.: Monotone Methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Maths. J. 21(11), 979–1000 (1972)

    MathSciNet  MATH  Google Scholar 

  59. Sattinger, D.H.: Topics in Stability and Bifurcaton Theory. Lectures Notes in Mathematics, vol. 309. Springer (1973)

    Google Scholar 

  60. Taira, K., Umezu, K.: Semilinear elliptic boundary-value problems in chemical reactor theory. J. Diff. Eqns. 142, 434–454 (1998)

    MathSciNet  MATH  Google Scholar 

  61. Taira, K.: Semilinear elliptic boundary-value problems in combustion theory. Proc. Royal Soc. Edimburgh 132A, 1453–1476 (2002)

    MathSciNet  MATH  Google Scholar 

  62. Uppal, A., Ray, W.H.: On the dynamic behavior of continuous stirred tank reactors. Chem. Eng. Sci. 29, 967–985 (1974)

    Google Scholar 

  63. Volpert, A.I., Volpert, V., Volpert,V.A.: Traveling Waves for Parabolic Systems. American Math. Soc. (2000)

    Google Scholar 

  64. Wiebers, H.: S-shape bifurcation of nonlinear elliptic boundary value problems. Math. Ann. 270, 555–570 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Omón Arancibia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omón Arancibia, A. (2019). Certain Aspects of Problems with Non Homogeneous Reactions. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics