Skip to main content

On Dynamic Interactions Between Body Motion and Fluid Motion

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 200))

Abstract

This contribution on dynamic fluid-body interactions concentrates on applying mathematical/analytical ideas to complement direct numerical studies. The typical body may be of given shape or flexible depending on the context. In the background there are numerous real-world motivations in industry, biomedical and environmental applications, many of which involve high flow rates. A review of ideas developed over the last decade for cases of high flow rates first addresses inviscid approaches to one or more bodies free to move within a channel flow, a skimming sharp-edged body on a free surface, the sinking of a body in water and the rocking or rolling of a body on a solid surface, before moving on to more recent viscous-inviscid approaches for channel flows and boundary layers. The beginnings of certain current research projects are also outlined. These concern models of liftoff of a body from a solid surface, the impact of a smooth body during skimming and viscous-inviscid effects in the presence of more than one freely moving body. Linear and nonlinear mathematical properties as appropriate are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smith, F.T., Ellis, A.S.: On interaction between falling bodies and the surrounding fluid. Mathematika 56, 140–168 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Hicks, P.D., Smith, F.T.: Skimming impacts and rebounds on shallow liquid layers. Proc. R. Soc. A 467, 653–674 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Smith, F.T., Wilson, P.L.: Fluid-body interactions: clashing, skimming, bouncing. Phil. Trans. R. Soc. A 369, 3007–3024 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Smith, F.T., Wilson, P.L.: Body-rock or lift-off in flow. J. Fluid Mech. 735, 91–119 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Liu, K., Smith, F.T.: Collisions, rebounds and skimming. Phil. Trans. R. Soc. A 372(2020) (2014)

    Google Scholar 

  6. Smith, F.T., Johnson, E.R.: Movement of a finite body in channel flow. Proc. R. Soc. A 472(2191), 20160164 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Smith, F.T.: Free motion of a body in a boundary layer or channel flow. J. Fluid Mech. 813, 279–300 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Smith, F.T., Liu, K.: Flooding and sinking of an originally skimming body. J. Eng. Math. 107(1), 37–60 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Liu, J.: Shallow-water skimming, skipping and rebound problems, Ph.D. thesis, University College London (2017)

    Google Scholar 

  10. Balta, S.: On fluid-body and fluid-network interactions, Ph.D. thesis, University College London (2017)

    Google Scholar 

  11. Balta, S., Smith, F.T.: Fluid flow lifting a body from a solid surface (in preparation) (2018)

    Google Scholar 

  12. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Foucaut, J.-M., Stanislas, M.: Take-off threshold velocity of solid particles lying under a turbulent boundary layer. Exp. Fluids 20(5), 377–382 (1996)

    Google Scholar 

  14. Patankar, N.A., Huang, P.Y., Ko, T., Joseph, D.D.: Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation. J. Fluid Mech. 438, 67–100 (2001)

    MATH  Google Scholar 

  15. Gray, J.M.N.T., Ancey, C.: Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535–588 (2011)

    MATH  Google Scholar 

  16. Virmavirta, M., Kivekäs, J., Komi, P.V.: Take-off aerodynamics in ski jumping. J. Biomech. 34(4), 465–470 (2001)

    Google Scholar 

  17. Miller, M.C., McCave, I.N., Komar, P.D.: Threshold of sediment motion under unidirectional currents. Sedimentology 24(4), 507–527 (1977)

    Google Scholar 

  18. Owen, P.R.: Saltation of uniform grains in air. J. Fluid Mech. 20(2), 225–242 (1964)

    MATH  Google Scholar 

  19. Shao, Y., Raupach, M.R., Findlater, P.A.: Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Rese.: Atmos. 98(D7), 12719–12726 (1993)

    Google Scholar 

  20. Jia, L.-B., Li, F., Yin, X.-Z., Yin, X.-Y.: Coupling modes between two flapping filaments. J. Appl. Mech. 581, 199–220 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Guazzelli, E.: Sedimentation of small particles: how can such a simple problem be so difficult? C.R. Mećanique 334 (2006)

    Google Scholar 

  22. Godone, D., Stanchi, S.: Soil Erosion Studies. InTech (2011)

    Google Scholar 

  23. Andrew, M., David, M., deVeber, G., Brooker, L.A.: Arterial thromboembolic complications in paediatric patients. Thromb. Haemost. 78(1), 715–725 (1997)

    Google Scholar 

  24. Babyn, P.S., Gahunia, H.K., Massicotte, P.: Pulmonary thromboembolism in children. Pediatr. Radiol. 35(3), 258–274 (2005)

    Google Scholar 

  25. Baker Jr., W.F.: Diagnosis of deep venous thrombosis and pulmonary embolism. Med. Clin. North Am. 82(3), 459–476 (1998)

    Google Scholar 

  26. Gaver, D.P. III, Jensen O.E., Halpern, D.: Surfactant and airway liquid flows. In: Nag, K. (ed.) Lung Surfactant and Disorder: Lung Biology in Health and Disease, vol. 201, p. 191. Taylor and Francis, London (2005)

    Google Scholar 

  27. Iguchi, Y., Kimura, K.: A case of brain embolism during catheter embolisation of head arteriovenous malformation. What is the mechanism of stroke? J. Neurol. Neurosurg. Psychiatry 78(1), 81 (2007)

    Google Scholar 

  28. Secomb, T.W., Skalak, R., Özkaya, N., Gross, J.F.: Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405–423 (1986)

    Google Scholar 

  29. White, A.H.: Mathematical modelling of the embolisation process in the treatment of arteriovenous malformations. Ph.D. Thesis, University of London (2008)

    Google Scholar 

  30. Balta, S., Smith, F.T.: Inviscid and low viscosity flows in multi-branching and reconnecting networks. J. Eng. Math. 104(1), 1–18 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Ellis, A.S.: Modelling chute delivery of grains in a food-sorting process, Ph.D. Thesis, University of London (2007)

    Google Scholar 

  32. Ellis, A.S., Smith, F.T.: A continuum model for a chute flow of grains. SIAM J. Appl. Math. 69(2), 305–329 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Koch, D.L., Hill, R.J.: Inertial effects in suspension and porous-media flows. Annu. Rev. Fluid Mech. 33, 619 (2001)

    MATH  Google Scholar 

  34. Willetts, B.: Aeolian and fluvial grain transport. Philos. Trans. R. Soc. Lond. A 356(1747), 2497–2513 (1998)

    Google Scholar 

  35. Bowles, R.G.A., Smith, F.T.: Lifting multi-blade flows with interaction. J. Fluid Mech. 415, 203–226 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Purvis, R., Smith, F.T.: Planar flow past two or more blades in ground effect. Q. J. Mech. Appl. Math. 57(1), 137–160 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Smith, F.T., Timoshin, S.N.: Planar flows past thin multi-blade configurations. J. Fluid Mech. 324, 355–377 (1996b)

    MATH  Google Scholar 

  38. Smith, F.T., Ovenden, N.C., Franke, P.T., Doorly, D.J.: What happens to pressure when a flow enters a side branch? J. Fluid Mech. 479, 231–258 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Tuck, E.O., Dixon, A.: Surf-skimmer planing hydrodynamics. J. Fluid Mech. 205, 581–592 (1989)

    Google Scholar 

  40. Smith, F.T.: Upstream interactions in channel flows. J. Fluid Mech. 79, 631–655 (1977)

    MATH  Google Scholar 

  41. Howison, S.D., Ockendon, J.R., Oliver, J.M.: Oblique slamming, planing and skimming. J. Eng. Math. 48, 321–337 (2004)

    MATH  Google Scholar 

  42. Khabakhpasheva, T.I., Korobkin, A.A.: Oblique impact of a smooth body on a thin layer of liquid. Proc. R. Soc. 469(2151) (2013)

    Google Scholar 

  43. Wagner, H.: Über Stoß-und gleitvorgänge an der Oberflaäche von Flüssigkeiten (Phenomena associated with impacts and sliding on liquid surfaces). Zeitschr. Math. Mech. 12 (1932)

    Google Scholar 

  44. Batyaev, E.A., Khabakhpasheva, T.I.: Initial stage of the inclined impact of a smooth body on a thin fluid layer. Fluid Dyn. 48(2), 211–222 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Stewartson, K., Williams, P.G.: Self-induced separation. Proc. R. Soc. Lond. A 312(1509), 181–206 (1969)

    Google Scholar 

  46. Smith, F.T.: The laminar separation of an incompressible fluid streaming past a smooth surface. Proc. R. Soc. Lond. 356(1687), 443–463 (1977)

    MATH  Google Scholar 

  47. Scheichl, B., Kluwick, A., Smith, F.T.: Break-away separation for high turbulence intensity and large Reynolds number. J. Fluid Mech. 670, 260–300 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Lagally, M.: Die reibungslose Strömung im Aussengebiet zweier Kreise. Z. Angew. Math. Mech. 9, 299–305 (1929)

    MATH  Google Scholar 

  49. Johnson, E.R., McDonald, N.R.: The motion of a vortex near two circular cylinders. Proc. Roy. Soc. A 460, 939–954 (2004)

    MathSciNet  MATH  Google Scholar 

  50. Crowdy, D.G.: Calculating the lift on a finite stack of cylindrical aerofoils. Proc. Roy. Soc. A 462, 1387–1407 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Crowdy, D.G., Marshall, J.S.: Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains. Proc. Roy. Soc. A 461, 2477–2501 (2005)

    MathSciNet  MATH  Google Scholar 

  52. Johnson, E.R., McDonald, N.R.: Vortices near barriers with multiple gaps. J. Fluid Mech. 531, 335–358 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Nehari, Z.: Conformal Mapping. McGraw-Hill, New York (1952)

    MATH  Google Scholar 

Download references

Acknowledgements

Thanks for support are due (FTS) to EPSRC through grant numbers GR/T11364/01, EP/G501831/1, EP/H501665/1 during part of this research, and (SB) to the Republic of Turkey for financial support. The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme. The Mathematics of Sea Ice Phenomena when part of the work on this paper was finalised, supported by EPSRC grant number EP/K032208/1. Thanks are due to Roger Gent and Richard Moser at AeroTex, Rob Lewis at TotalSim, Sarah Bee and Mark Honeywood at Sortex-Buhler and UCL colleagues Robert Bowles, Nick Ovenden and Sergei Timoshin for very helpful discussions on body and particle movement in near-wall shear flow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, F.T., Balta, S., Liu, K., Johnson, E.R. (2019). On Dynamic Interactions Between Body Motion and Fluid Motion. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics