Skip to main content

Mechanical Characterization and Numerical Modeling of High Density Polyethylene Pipes

  • Conference paper
  • First Online:

Abstract

The worldwide plastic pipe industry is predicted to experience a dramatic grow over the next decade. As a group of plastic pipes, high density polyethylene (HDPE) pipes are often employed because of their low-cost production, easy installation, and excellent long-term performance. However, due to their complicated semi-crystalline microstructure and nonlinear time-temperature dependent mechanical behavior, the mechanical characterization of HDPE pipes is very challenging and time consuming. In addition, during the manufacturing of HDPE pipes, the processing conditions (such as molecular orientation, cooling rate, and extrusion injection pressure) can introduce different complex microstructures into the material which yield different material properties. In this study, a robust mechanical characterization approach is developed to support numerical modeling of HDPE pipes. The mechanical tests are performed directly on as-manufactured pipe segments. The simulation results are compared with the experimental data for tensile and internal pressurization (burst) tests and a good agreement is observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hu, J., Li, Y., Chen, W., Zhao, B., Yang, D.: Effects of temperature and stress on creep properties of ethylene tetrafluoroethylene (ETFE) foils for transparent buildings. Polym. Test. 59, 268–276 (2017)

    Article  Google Scholar 

  2. Zhou, F., Hou, S., Qian, X., Chen, Z., Zheng, C., Xu, F.: Creep behavior and lifetime prediction of PMMA immersed in liquid scintillator. Polym. Test. 53, 323–328 (2016)

    Article  Google Scholar 

  3. Takahashi, Y., Tateiwa, T., Shishido, T., Masaoka, T., Kubo, K., Yamamoto, K.: Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty. J. Mech. Behav. Biomed. Mater. 62, 399–406 (2016)

    Article  Google Scholar 

  4. Fatima, M., Mohamed, S., Mohamed, E.: Burst behavior of CPVC compared to HDPE thermoplastic polymer under a controlled internal pressure. Proc. Struct. Integrity. 3, 380–386 (2017)

    Article  Google Scholar 

  5. Moon, J., Bae, H., Song, J., Choi, S.: Algorithmic methods of reference-line construction for estimating long-term strength of plastic pipe system. Polym. Test. 56, 58–64 (2016)

    Article  Google Scholar 

  6. Zhang, Y., Jar, P.-Y.B.: Time-strain rate superposition for relaxation behavior of polyethylene pressure pipes. Polym. Test. 50, 292–296 (2016)

    Article  Google Scholar 

  7. Vakili-Tahami, F., Adibeig, M.R.: Using developed creep constitutive model for optimum design of HDPE pipes. Polym. Test. 63, 392–397 (2017)

    Article  Google Scholar 

  8. Taherzadehboroujeni, M., Kalhor, R., Fahs, G., Moore, R., Case, S.: Accelerated testing method to estimate the long-term hydrostatic strength of semi-crystalline plastic pipes. Polym. Eng. Sci. 60, (2019)

    Google Scholar 

  9. Kühl, A., Muñoz-Rojas, P.A., Barbieri, R., Benvenutti, I.J.: A procedure for modeling the nonlinear viscoelastoplastic creep of HDPE at small strains. Polym. Eng. Sci. 57, 144–152 (2017)

    Article  Google Scholar 

  10. Cheng, C., Widera, G.O.: Development of maximum secondary creep strain method for lifetime of HDPE pipes. J. Press. Vessel. Technol. 131, 021208 (2009)

    Article  Google Scholar 

  11. Guedes, R.M.: A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polym. Test. 30, 294–302 (2011)

    Article  Google Scholar 

  12. Colak, O.U., Dusunceli, N.: Modeling viscoelastic and viscoplastic behavior of high density polyethylene (HDPE). J. Eng. Mater. Technol. 128, 572–578 (2006)

    Article  Google Scholar 

  13. Reis, J.M.L., Pacheco, L.J., da Costa Mattos, H.S.: Tensile behavior of post-consumer recycled high-density polyethylene at different strain rates. Polym. Test. 32, 338–342 (2013)

    Article  Google Scholar 

  14. Bilgin, O.: Modeling viscoelastic behavior of polyethylene pipe stresses. J. Mater. Civ. Eng. 26, 676–683 (2014)

    Article  Google Scholar 

  15. Taherzadeh, M., Baghani, M., Baniassadi, M., Abrinia, K., Safdari, M.: Modeling and homogenization of shape memory polymer nanocomposites. J. Compos. Part B Eng. 91, 36–43 (2016)

    Article  Google Scholar 

  16. Yang, F., Mousavie, A., Oh, T., Yang, T., Lu, Y., Farley, C., Bodnar, R., Niu, L., Qiao, R., Li, Z.: Sodium–sulfur flow battery for low‐cost electrical storage. J. Adv Energy Mater. 8, 1701991 (2018)

    Article  Google Scholar 

  17. Piavis, W., Turn, S., Mousavi, A.: Non-thermal gliding-arc plasma reforming of dodecane and hydroprocessed renewable diesel. Int J Hydrogen Energy. 40, 13295–13305 (2015)

    Article  Google Scholar 

  18. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  Google Scholar 

  19. Bauwens, J.: Yield condition and propagation of Lüders’ lines in tension–torsion experiments on poly (vinyl chloride). J. Polym. Sci. B Polym. Phys. 8, 893–901 (1970)

    Article  Google Scholar 

  20. Bauwens-Crowet, C., Bauwens, J.-C., Homès, G.: The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. J. Mater. Sci. 7, 176–183 (1972)

    Article  Google Scholar 

  21. Bauwens-Crowet, C.: The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates. J. Mater. Sci. 8, 968–979 (1973)

    Article  Google Scholar 

  22. Haward, R., Thackray, G.: The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A. 302, 453–472 (1968)

    Article  Google Scholar 

  23. Richeton, J., Ahzi, S., Daridon, L., Rémond, Y.: A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer. 46, 6035–6043 (2005)

    Article  Google Scholar 

  24. Roetling, J.: Yield stress behaviour of polymethylmethacrylate. Polymer. 6, 311–317 (1965)

    Article  Google Scholar 

  25. Roetling, J.: Yield stress behaviour of isotactic polypropylene. Polymer. 7, 303–306 (1966)

    Article  Google Scholar 

  26. Roetling, J.: Yield stress behaviour of poly (ethyl methacrylate) in the glass transition region. Polymer. 6, 615–619 (1965)

    Article  Google Scholar 

  27. Truss, R., Clarke, P., Duckett, R., Ward, I.: The dependence of yield behavior on temperature, pressure, and strain rate for linear polyethylenes of different molecular weight and morphology. J. Polym. Sci. Polym. Phys. Ed. 22, 191–209 (1984)

    Article  Google Scholar 

  28. Truss, R., Duckett, R., Ward, I.: Effect of hydrostatic pressure on the yield and fracture of polyethylene in torsion. J. Mater. Sci. 16, 1689–1699 (1981)

    Article  Google Scholar 

  29. Bauwens-Crowet, C., Ots, J.-M., Bauwens, J.-C.: The strain-rate and temperature dependence of yield of polycarbonate in tension, tensile creep and impact tests. J. Mater. Sci. 9, 1197–1201 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Taherzadehboroujeni .

Editor information

Editors and Affiliations

Appendix

Appendix

SUBROUTINE CREEP(DECRA,DESWA,STATEV,SERD,EC,ESW,P,QTILD, 1 TEMP,DTEMP,PREDEF,DPRED,TIME,DTIME,CMNAME,LEXIMP,LEND, 2 COORDS,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) C INCLUDE 'ABA_PARAM.INC' C CHARACTER*80 CMNAME C DIMENSION DECRA(5),DESWA(5),STATEV(*),PREDEF(*),DPRED(*), 1 TIME(2),COORDS(*),EC(2),ESW(2) C C REAL*8 :: v1, v2, e2, e1, loge1, h1, h2, g1, g2, K, y0, KK REAL*8 :: s, T, p, f, ff, y, x1, x2, sinh1, sinh2, n1, n2, y1 REAL*8 :: y2, ee1, ee2, yy1, yy2, dly v1 = 1.74220376E-3 loge1 = 139.8808 h1 = 8.26058E0 g1 = 9.4290946E-9 v2 = 2.632239842E-4 e2 = 1.48346E14 h2 = 1.75285E0 g2 = 3.8763635E-10 K = 1.38064852E0 KK = 1.38064852E-4 C e1=exp(loge1) s = QTILD T = TEMP n1=h1/KK/T+P*g1/KK/T n2=h2/KK/T+P*g2/KK/T ee1=exp(n1) ee2=exp(n2) yy1=ee1/(v1*1e-23) yy2=ee2/(v2*1e-23) y1=yy1/e1 y2=yy2/e2 y0 = s/(y1+y2) y = y0 DO WHILE ( dly < 4. ) y0 = y x1 = EXP((h1+P*g1)/(KK*T))/e1 x2 = EXP((h2+P*g2)/(KK*T))/e2 sinh1 = log(y0*x1+sqrt((y0*x1)**2.+1.)) sinh2 = log(y0*x2+sqrt((y0*x2)**2.+1.)) f = K*T*(sinh1/v1+sinh2/v2)-s ff=K*T*(x1/SQRT((y0*x1)**2.+1.)/v1+x2/SQRT((y0*x2)**2.+1.)/v2) y = y0-f/ff dly = log10(y0)-log10(abs(f/ff)) END DO DECRA(1) = y*DTIME C RETURN END

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taherzadehboroujeni, M., Case, S.W. (2020). Mechanical Characterization and Numerical Modeling of High Density Polyethylene Pipes. In: Linderholt, A., Allen, M., Mayes, R., Rixen, D. (eds) Dynamic Substructures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12184-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12184-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12183-9

  • Online ISBN: 978-3-030-12184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics