Skip to main content

Overview of Free Interface Substructuring Approaches for Systems with Arbitrary Viscous Damping in Dynamic Substructuring

  • Conference paper
  • First Online:
  • 1141 Accesses

Abstract

Most classical substructuring methods yield great approximation accuracy if the underlying system is not damped. One approach is a fixed interface method, the Craig-Bampton method. In contrast, many other methods (e.g., MacNeal method, Rubin method, Craig-Chang method) employ free interface modes, (residual) attachment modes, and rigid body modes. None of the aforementioned methods takes any damping effects into account when performing the reduction. If damping significantly influences the dynamic behavior of the system, the approximation accuracy can be very poor. One procedure to handle arbitrarily viscously damped systems and to take damping effects into account is to transform the second-order differential equations into twice the number of first-order differential equations resulting in state-space representation of the system. Solving the corresponding eigenvalue problem allows the damped equations to be decoupled; however, complex eigenmodes and eigenvalues occur. The complex modes are used to build a reduction basis that includes damping properties.

The derivation of different Craig-Bampton substructuring methods (fixed interface) for viscously damped systems was presented in Gruber et al. (Comparison of Craig-Bampton approaches for systems with arbitrary viscous damping in dynamic substructuring). In contrast, we present here the derivation of different free interface substructuring methods for viscously damped systems in a comprehensible consistent manner. Craig and Ni suggested a method that employs complex free interface vibration modes (1989). De Kraker and van Campen give an extension of Rubin’s method for general state-space models (1996). Liu and Zheng proposed an improved component modes synthesis method for nonclassically damped systems (2008), which is an extension of Craig and Ni’s method. A detailed comparison between the different formulations will be given. Liu and Zheng’s method can be considered as a second-order extension of Craig and Ni’s method. We propose a third-order extension and a generalization to any given higher order. Moreover, a new method combining the reduction basis of Liu and Zheng’s approach with the primal assembly procedure applied by de Kraker and van Campen is proposed. The presented theory and the comparison between the methods will be illustrated in different examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The indication of the substructure (s) is omitted in the Sects. 11.3.1.1, 11.3.2.1 and 11.3.3.1 for clarity.

References

  1. Craig, R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006)

    MATH  Google Scholar 

  2. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  Google Scholar 

  3. MacNeal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1(4), 581–601 (1971). https://doi.org/10.1016/0045-7949(71)90031-9

    Article  Google Scholar 

  4. Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. 13(8), 995–1006 (1975). https://doi.org/10.2514/3.60497

    Article  Google Scholar 

  5. Rixen, D.J.: A dual Craig-Bampton method for dynamic substructuring. J. Comput. Appl. Math. 168(1–2), 383–391 (2004). https://doi.org/10.1016/j.cam.2003.12.014

    Article  MathSciNet  Google Scholar 

  6. Craig, R.R., Chang, C.-J.: On the use of attachment modes in substructure coupling for dynamic analysis. In: 18th Structural Dynamics and Materials Conference. Structures, Structural Dynamics, and Materials and Co-located Conferences, pp. 89–99. American Institute of Aeronautics and Astronautics, San Diego (1977). https://doi.org/10.2514/6.1977-405

  7. Herting, D.N.: A general purpose, multi-stage, component modal synthesis method. Finite Elem. Anal. Des. 1(2), 153–164 (1985)

    Article  Google Scholar 

  8. Park, K.C., Park, Y.H.: Partitioned component mode synthesis via a flexibility approach. AIAA J. 42(6), 1236–1245 (2004). https://doi.org/10.2514/1.10423

    Article  Google Scholar 

  9. Gruber, F.M., Rixen, D.J.: Evaluation of substructure reduction techniques with fixed and free interfaces. Stroj. Vestn.-J. Mech. 62(7–8), 452–462 (2016). https://doi.org/10.5545/sv-jme.2016.3735

    Article  Google Scholar 

  10. Craig, R.R.: Coupling of substructures for dynamic analyses: an overview. In: Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, pp. 1573–1584 (2000)

    Google Scholar 

  11. Gruber, F.M., Rixen, D.J.: Comparison of Craig-Bampton approaches for systems with arbitrary viscous damping in dynamic substructuring. In: Linderholt, A., Allen, M.S., Mayes, R.L., Rixen, D. (eds.) Dynamics of Coupled Structures, vol. 4, pp. 35–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74654-8_3

    Chapter  Google Scholar 

  12. Hasselman, T.K., Kaplan, A.: Dynamic analysis of large systems by complex mode synthesis. J. Dyn. Syst. Meas. Control. 96(3), 327–333 (1974). https://doi.org/10.1115/1.3426810

    Article  Google Scholar 

  13. Beliveau, J.-G., Soucy, Y.: Damping synthesis using complex substructure modes and a Hermitian system representation. AIAA J. 23(12), 1952–1956 (1985). https://doi.org/10.2514/3.9201

    Article  Google Scholar 

  14. de Kraker, A.: Generalization of the Craig-Bampton CMS procedure for general damping. Technical Report, Technische Universiteit Eindhoven, Vakgroep Fundamentele Werktuigkunde, Rapportnr. WFW 93.023 (1993)

    Google Scholar 

  15. Craig, R.R., Ni, Z.: Component mode synthesis for model order reduction of nonclassically damped systems. J. Guid. Control. Dyn. 12(4), 577–584 (1989). https://doi.org/10.2514/3.20446

    Article  MathSciNet  Google Scholar 

  16. de Kraker, A., van Campen, D.H.: Rubin’s CMS reduction method for general state-space models. Comput. Struct. 58(3), 597–606 (1996). https://doi.org/10.1016/0045-7949(95)00151-6

    Article  Google Scholar 

  17. Liu, M.H., Zheng, G.T.: Improved component-mode synthesis for nonclassically damped systems. AIAA J. 46(5), 1160–1168 (2008) https://doi.org/10.2514/1.32869

    Article  MathSciNet  Google Scholar 

  18. Caughey, T.K.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 27(2), 269–271 (1960). https://doi.org/10.1115/1.3643949

    Article  MathSciNet  Google Scholar 

  19. Ma, F., Imam, A., Morzfeld, M.: The decoupling of damped linear systems in oscillatory free vibration. J. Sound Vib. 324(1), 408–428 (2009). https://doi.org/10.1016/j.jsv.2009.02.005

    Article  Google Scholar 

  20. Caughey, T.K., O’Kelly, M.E.J.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 32(3), 583–588 (1965). https://doi.org/10.1115/1.3627262

    Article  MathSciNet  Google Scholar 

  21. Hasselman, T.K.: Damping synthesis from substructure tests. AIAA J. 14(10), 1409–1418 (1976). https://doi.org/10.2514/3.61481

    Article  Google Scholar 

  22. Rayleigh, J.W.S.B.: The Theory of Sound, vol. 2. Macmillan, London (1896)

    MATH  Google Scholar 

  23. Frazer, R.A., Duncan, W.J., Collar, A.R.: Elementary Matrices and Some Applications to Dynamics and Differential Equations. Cambridge University Press, Cambridge (1938)

    Book  Google Scholar 

  24. Hurty, W.C., Rubinstein, M.F.: Dynamics of Structures. Prentice-Hall, Englewood Cliffs (1964)

    Google Scholar 

  25. Lang, G.F.: Understanding modal vectors. In: Mains, M., Blough, J.R. (eds.) Topics in Modal Analysis {&} Testing, Volume 10: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017, pp. 55–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54810-4_8

    Chapter  Google Scholar 

  26. Craig, R.R., Chung, Y.-T.: A generalized substructure coupling procedure for damped systems. In: 22nd Structures, Structural Dynamics and Materials Conference. Structures, Structural Dynamics, and Materials and Co-located Conferences, pp. 254–266. American Institute of Aeronautics and Astronautics, Atlanta (1981). https://doi.org/10.2514/6.1981-560

  27. Balmès, E.: New results on the identification of normal modes from experimental complex modes. Mech. Syst. Signal Process. 11(2), 229–243 (1997). https://doi.org/10.1006/MSSP.1996.0058

    Article  Google Scholar 

  28. Gruber, F.M., Rixen, D.J.: Dual Craig-Bampton component mode synthesis method for model order reduction of nonclassically damped linear systems. Mech. Syst. Signal Process. 111, 678–698 (2018). https://doi.org/10.1016/J.YMSSP.2018.04.019

    Article  Google Scholar 

  29. de Kraker, A.: The RUBIN CMS procedure for general state-space models. Technical Report, Technische Universiteit Eindhoven, Vakgroep Fundamentele Werktuigkunde, Rapportnr. Rapportnr. WFW 94.081 (1994)

    Google Scholar 

  30. Zhu, D.C., Shi, G.Q.: A theory of structural dynamics with defective phenomena. In: Computational Mechanics ’88, pp. 1146–1147. Springer, Berlin (1988). https://doi.org/10.1007/978-3-642-61381-4_305

    Chapter  Google Scholar 

  31. Muravyov, A.A., Hutton, S.G.: Component mode synthesis for nonclassically damped systems. AIAA J. 34(8), 1664–1669 (1996). https://doi.org/10.2514/3.13287

    Article  Google Scholar 

  32. Martinez, D.R., Carrie, T.G., Gregory, D.L., Miller, A.K.: Combined experimental/analytical modelling using component modes synthesis (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian M. Gruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gruber, F.M., Berninger, D., Rixen, D.J. (2020). Overview of Free Interface Substructuring Approaches for Systems with Arbitrary Viscous Damping in Dynamic Substructuring. In: Linderholt, A., Allen, M., Mayes, R., Rixen, D. (eds) Dynamic Substructures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12184-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12184-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12183-9

  • Online ISBN: 978-3-030-12184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics