Skip to main content

The Role of Strigolactones in Plant–Microbe Interactions

  • Chapter
  • First Online:
Strigolactones - Biology and Applications

Abstract

Plants associate with an infinite number of microorganisms that interact with their hosts in a mutualistic or parasitic manner. Evidence is accumulating that strigolactones (SLs) play a role in shaping these associations. The best described function of SLs in plant–microbe interactions is in the rhizosphere, where, after being exuded from the root, they activate hyphal branching and enhanced growth and energy metabolism of symbiotic arbuscular mycorrhiza fungi (AMF). Furthermore, an impact of SLs on the quantitative development of root nodule symbiosis with symbiotic nitrogen-fixing bacteria and on the success of fungal and bacterial leaf pathogens is beginning to be revealed. Thus far, the role of SLs has predominantly been studied in binary plant–microbe interactions. It can be predicted that their impact on the bacterial, fungal, and oomycetal communities (microbiomes), which thrive on roots, in the rhizosphere, and on aerial tissues, will be addressed in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010a) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51(7):1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Tanigawa F, Kashihara T, Hayashi H (2010b) Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry 71(16):1865–1871

    Article  CAS  PubMed  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2010) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62(3):1049–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belmondo S, Marschall R, Tudzynski P, López Ráez JA, Artuso E, Prandi C, Lanfranco L (2017) Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Curr Genet 63(2):201–213

    Article  CAS  PubMed  Google Scholar 

  • Besserer A, Puech-Pagés V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):e226. https://doi.org/10.1371/journal.pbio.0040226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148(1):402–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake SN, Barry KM, Gill WM, Reid JB, Foo E (2016) The role of strigolactones and ethylene in disease caused by Pythium irregulare. Mol Plant Pathol 17(5):680–690

    Article  CAS  PubMed  Google Scholar 

  • Boyer F-D, de Saint Germain A, Pillot J-P, Pouvreau J-B, Chen VX, Ramos S, Stévenin A, Simier P, Delavault P, Beau J-M et al (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159(4):1524–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, York T, Pumplin N, Mueller L, Harrison M (2016) Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat Plants 2:15208

    Article  CAS  PubMed  Google Scholar 

  • Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GED et al (2014) The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26(12):4680–4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E et al (2010) Phosphate systemically inhibits development of arbuscular mycorrhizal in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64(6):1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Broughton W, Jabbouri S, Peret X (2000) Keys to symbiotic harmony. J Bacteriol 182(20):5641–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buée M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from from plant root exudates. Mol Plant Microbe Interact 13(6):693–698

    Article  PubMed  Google Scholar 

  • Carbonnel S, Gutjahr C (2014) Control of arbuscular mycorrhiza development by nutrient signals. Front Plant Sci 5:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GED (2014) Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiol 166(4):2077–2090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154(3753):1189–1190

    Article  CAS  PubMed  Google Scholar 

  • De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B, Kunert K, Boyer FD, Goormachtig S (2015) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66(1):137–146

    Article  PubMed  CAS  Google Scholar 

  • Decker EL, Alder A, Hunn S, Ferguson J, Lehtonen MT, Scheler B, Kerres KL, Wiedemann G, Safavi-Rizi V, Nordzieke S et al (2017) Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol 216(2):455–468

    Article  CAS  PubMed  Google Scholar 

  • Delaux P-M, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané J-M (2014) Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 10(7):e1004487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234(2):419–427

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13(1):162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favre P, Bapaume L, Bossolini E, Delorenzi M, Falquet L, Reinhardt D (2014) A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biol 14(1):333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40(7):770–790

    Article  CAS  PubMed  Google Scholar 

  • Flematti GR, Scaffidi A, Waters MT, Smith SM (2016) Stereospecificity in strigolactone biosynthesis and perception. Planta 243(6):1361–1373

    Article  CAS  PubMed  Google Scholar 

  • Fliegmann J, Bono JJ (2015) Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 32(7):455–464

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17(2):464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Ferguson BJ, Reid JB (2014) The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. Ann Bot 113(6):1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Blake SN, Fisher BJ, Smith JA, Reid JB (2016) The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum. Planta 243(6):1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 113(1):19–33

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P et al (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198(1):190–202

    Article  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C et al (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194

    Article  CAS  PubMed  Google Scholar 

  • Gough C, Cullimore J (2011) Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol Plant Microbe Interact 24(8):867–878

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG, Summers W, Carbonnel S, Mansfield C, Yang S-Y, Nadal M et al (2015) Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350(6267):1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV et al (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111(2):851–856

    Article  PubMed  CAS  Google Scholar 

  • Haq BU, Ahmad MZ, Ur Rehman N, Wang J, Li P, Li D, Zhao J (2017) Functional characterization of soybean strigolactone biosynthesis and signaling genes in Arabidopsis max mutants and GmMAX3 in soybean nodulation. BMC Plant Biol 17:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera-Medina M, Steinkellner S, Vierheilig H, Ocampo Bote J, García Garrido J (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564. https://doi.org/10.1111/j.1469-8137.2007.02107.x

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Yamagami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, Yajima S, Kyozuka J, Ueguchi-Tanaka M, Matsuoka M et al (2017) Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiol 174(2):1250–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, Roux C, Frei Dit Frey N (2017) The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants. Front Plant Sci 8:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaori Y, Xiaonan X, Hitoshi S, Yasutomo T, Shin O, Kohki A, Hideo H, Koichi Y (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179(2):484–494

    Article  CAS  Google Scholar 

  • Keymer A, Gutjahr C (2018) Cross-kingdom lipid transfer in arbuscular mycorrhizal symbiosis and beyond. Curr Opin Plant Biol 44:137–144. https://doi.org/10.1016/j.pbi.2018.1004.1005

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J (2018) Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol 59(3):544–553

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ et al (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196(2):535–547

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Fiorilli V, Venice F, Bonfante P (2018) Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot 69(9):2175–2188

    Article  CAS  PubMed  Google Scholar 

  • Li W, Kien Huu N, Ha Duc C, Chien Van H, Watanabe Y, Osakabe Y, Leyva-Gonzalez MA, Sato M, Toyooka K, Voges L et al (2017) The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet 13(11):e1007076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Murray J (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants 5:33

    Article  CAS  PubMed Central  Google Scholar 

  • Liu W, Kohlen W, Lillo A (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F (2013) CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Bot 64(7):1967–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Raez J (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243:1375–1385

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez J, Charnikhovab T, Fernández I, Bouwmeester H, Pozo M (2010a) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    Article  CAS  Google Scholar 

  • López-Ráez J, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TD, Thompson AJ, Ruyter‐Spira C, Bouwmeester H (2010b) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187(2):343–354

    Article  PubMed  CAS  Google Scholar 

  • López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the yin and yang. Trends Plant Sci 22(6):527–537

    Article  PubMed  CAS  Google Scholar 

  • Marzec M, Muszynska A (2015) In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. Int J Mol Sci 16(4):6757–6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdam EL, Hugill C, Fort S, Samain E, Cottaz S, Davies NW, Reid JB, Foo E (2017) Determining the site of action of strigolactones during nodulation. Plant Physiol 175(1):529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K (2016) Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130:90–98

    Article  CAS  PubMed  Google Scholar 

  • Moscatiello R, Sello S, Novero M, Negro A, Bonfante P, Navazio L (2014) The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol 203(3):1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315(5808):101–104

    Article  CAS  PubMed  Google Scholar 

  • Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T, Sakai T, Inada S, Arima S, Hashiguchi M, Akashi R et al (2015) Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling. Plant Cell Physiol 56(11):2100–2109

    CAS  PubMed  Google Scholar 

  • Oancea F, Georgescu E, Matusova R, Georgescu F, Nicolescu A, Raut I, Jecu ML, Vladulescu MC, Vladulescu L, Deleanu C (2017) New strigolactone mimics as exogenous signals for rhizosphere organisms. Molecules 22(6):1–15

    Article  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59(1):519–546

    Article  CAS  PubMed  Google Scholar 

  • GED O, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  Google Scholar 

  • Peláez-Vico MA, Bernabéu-Roda L, Kohlen W, Soto MJ, López-Ráez JA (2016) Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci 245:119–127

    Article  PubMed  CAS  Google Scholar 

  • Piisilä M, Keceli MA, Brader G, Jakobson L, Jöesaar I, Sipari N, Kollist H, Palva ET, Kariola T (2015) The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol 15(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radutoiu S, Madsen L, Madsen E, Jurkiewicz A, Fukai E, Quistgaard E, Albrektsen A, James E, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman NU, Ali M, Ahmad MZ, Liang G, Zhao J (2018) Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microb Pathog 114:420–430

    Article  PubMed  CAS  Google Scholar 

  • Roth R, Paszkowski U (2017) Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr Opin Plant Biol 39:50–56

    Article  CAS  PubMed  Google Scholar 

  • Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10(1):130–144

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Simon S, Gübeli C, Liu G-W, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L (2015) Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr Biol 25(5):647–655

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165(3):1221–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlemper TR, Leite MFA, Lucheta AR, Shimels M, Bouwmeester HJ, van Veen JA, Kuramae EE (2017) Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol Ecol 93(8):1–11

    Article  CAS  Google Scholar 

  • Sharda JN, Koide RT (2008) Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? New Phytol 180(3):696–701

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Li J (2014) Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol 21:23–29

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62(1):227–250

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D (2013) The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol Lett 342(2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D (2015) Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot 66(16):5123–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315(5808):104–107

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vera R, García JM, Pozo MJ, López-Ráez JA (2014) Do strigolactones contribute to plant defence? Mol Plant Pathol 15(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki S, Handa Y, Takeda N, Kawaguchi M (2016) Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mol Plant Microbe Interact 29(4):277–286

    Article  CAS  PubMed  Google Scholar 

  • van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang WC, Bisseling T, Geurts R (2015) The strigolactone biosynthesis gene DWARF27 is co-opted in Rhizobium symbiosis. BMC Plant Biol 15:260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novak O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol 212(4):954–963

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68(1):291–322

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, McErlean CSP (2018) Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69(9):2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196(4):1208–1216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Gutjahr .

Editor information

Editors and Affiliations

Glossary

ABC transporters

Members of a transmembrane transporter family. They often consist of multiple subunits comprising transmembrane domains and membrane-bound ATPases. Hydrolysis of ATP by the ATPases fuels energy-dependent translocation of substrates across membranes.

Actinomycete

Diverse order of Gram-positive, anaerobic bacteria, which have a mycelium-like, filamentous, and branching growth habit. Some species form root nodule symbiosis with plants of the Fagales, Rosales, and Cucurbitales.

Arbuscules

Tree-shaped hyphal structure, formed by arbuscular mycorrhiza fungi in root cortex cells. These structures release mineral nutrients to apoplast between arbuscule and host cell and take up lipids, delivered by the host.

Arbuscular mycorrhiza

Ancient symbiosis between most land plants and fungi of the Glomeromycotina. Endomycorrhiza, in which the fungus penetrates root cortex cells to form tree-shaped arbuscules. The fungus improves plant mineral nutrition and receives lipids and carbohydrates stemming from photosynthesis in return.

Biotroph

Parasite or symbiont, which colonizes a living host cell and exploits the living cell for. Example for nutrients.

Chitin

N-acetyl-glucosamine polymer, which is the main component of fungal cell walls.

Flavonoids

Family of chemical compounds with several phenyl-rings often containing a keto group. They are widespread in the plant kingdom and act, for example, as flower colors, as toxic deterrents of pathogens, or as attractants of rhizobia in the rhizosphere.

Haber–Bosch process

An industrial process producing ammonium from molecular nitrogen and hydrogen. The process requires a catalyst (e.g., iron) and high temperature and pressure (400–500 °C; 15–25 MPa). It is named after its inventors Fritz Haber and Carl Bosch.

Hemibiotroph

Plant pathogen, which first colonizes the plant in a biotrophic manner and then turns into a necrotroph.

Hyphae

Thread-like structures, which form the body of fungi.

Microbiome

The term microbiome describes the community of microbes colonizing certain niche including bacteria, archaea, protists, fungi, and viruses or their collective genomes.

Mutualism

Interaction between a minimum of two organisms, in which both organisms profit from the collaboration.

Nectrotroph

Parasite, which kills the cell of the host and feeds on the dead material.

Nodule primordia

Root nodule in its earliest recognizable stage, from when cell division has started to a visible small white nodule, before the nodule is mature and functional.

Oomycetes

Oomycota is a group of filamentous protist with c. 500 species. The name derives from their oversized oogonia, which contain the female gametes.

Parasitism

Relationship between at least two species, in which one of the two lives on the cost of its host and causes harm to it.

Spore

Unit of asexual reproduction of fungi used for dispersal and survival (e.g. for plant-interacting fungi through winter, when hosts are unavailable). Spores are an integral part of the fungal life cycle.

Rhizosphere

Narrow region of the soil, which is directly attached to the root and influenced by root exudates and sloughed-off plant cells. The rhizosphere hosts a specific set of microbes, which are influenced by the root activity.

Root nodule symbiosis

Symbiosis between plants of most legumes and bacteria belonging to the rhizobia or less frequent members of the Fagales, Cucurbitales, and Rosales and actinomycetes. The bacteria are hosted in membrane-surrounded compartments in cells of root nodules, which are lateral organs derived from cell division. The bacteria fix atmospheric nitrogen and provide the plant with ammonium in exchange for organic carbon.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rochange, S., Goormachtig, S., Lopez-Raez, J.A., Gutjahr, C. (2019). The Role of Strigolactones in Plant–Microbe Interactions. In: Koltai, H., Prandi, C. (eds) Strigolactones - Biology and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-12153-2_4

Download citation

Publish with us

Policies and ethics