Skip to main content

Improved Quality Video Transmission by Optical Channel from Underwater Mobile Robots

  • Conference paper
  • First Online:
Recent Research in Control Engineering and Decision Making (ICIT 2019)

Abstract

Search for minerals in the continental shelf of Russia, monitoring gas and oil pipelines, inspecting the underwater parts of the vessel, solving the problem of navigational uncertainty under water is impossible without the use of underwater mobile robots that allow transmitting control data, telemetric information and video images of improved quality in real time. In the interests of solving these tasks, a prototype of an underwater optical channel for transmitting information and control data, as well as enhanced submarine images with a speed of 10 … 100 Mbit/s, has been developed and the requirements for its technical parameters have been formulated. The limiting distances for transmitting information in different types of waters for an underwater transmission system with a budget of 45 dB have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francois, R.E., et al.: Unmanned arctic research submersible (UARS) system development and test report. Technical report, no. APL-UW 7219. Applied Physics Laboratory, University of Washington (1972)

    Google Scholar 

  2. Baulo, E.N., Bukin, O.A., Doroshenko, I.M., Major, A.Y., Salyuk, P.A.: Teleupravlyaemyj podvodnyj kompleks dlya issledovaniya bioopticheskih parametrov morskoj vody [Remote-controlled underwater complex for the study of bio-optical parameters of sea water]. Optika atmosfery i okeana 27(3): 3–8 (2014). (in Russian)

    Google Scholar 

  3. Shlomi, A.: Underwater optical wireless communication network. J. Opt. Eng. 59, 110 (2010)

    Google Scholar 

  4. Doronin, Y.P.: Fizika okeana [Ocean Physics]. Gidrometeoizdat, St. Petersburg (1978). (in Russian)

    Google Scholar 

  5. William, M.I., James, B.P.: Infrared optical properties of water and ice spheres. Icarus 8, 324–360 (1968)

    Article  Google Scholar 

  6. Pratt, V.: Lazernye sistemy svyazi [Laser Communication Systems]. Svyaz, Moscow (1972). (in Russian)

    Google Scholar 

  7. Shifrin, K.S.: Vvedenie v optiku okeana [Introduction to Ocean Optics]. Gidrometeoizdat, St. Peterspurg (1983). (in Russian)

    Google Scholar 

  8. Hanson, F., Stojan, R.: High bandwidth underwater optical communication. Appl. Opt. 47(10), 90 (2008)

    Google Scholar 

  9. Snow, J.B., Flatley, J.P., Freeman, D.E., Landry, M.A., Lindstrom, C.E., Longacre, J.E., Shwartz, J.A.: Underwater propagation of high data rate laser communication pulses. In: SPIE, vol. 1750, pp. 419–427 (1992)

    Google Scholar 

  10. Bales, J.W., Chryssostomidis, C.: High bandwidth, low-power, shot range optical communications under-water. In: International Symposium on Unmanned Untethered Submersible Technology, vol. 9, pp. 406–415 (1995)

    Google Scholar 

  11. Chancey, M.A.: Short range underwater communication links. Master thesis. North Carolina state University (2005)

    Google Scholar 

  12. Dmitriev, V.T., Kirillov, S.N., Kuznecov, S.N., Locmanov, A.A., Polyakov, S.Y.: Apparatura podvodnoj opticheskoj svyazi [Submarine Optical Communications Equipment]. Patent holder: «Ryazan state radio engineering university» Patent №2526207. (in Russian)

    Google Scholar 

  13. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphic Gems IV, pp. 474–485 (1994)

    Chapter  Google Scholar 

  14. Michelson, A.A.: Studies in Optics. University of Chicago (1927)

    Google Scholar 

  15. Kirillov, S.N., Balyuk, S.A., Kuznecov, S.N., Esenin, A.S.: Razrabotka modeli rasprostraneniya opticheskogo signala v vodnoj srede dlya podvodnyh sistem peredachi informacii [Development of a model of optical signal propagation in an aquatic medium for underwater information transmission systems]. Vestn. RSREU 2(40), 3–8 (2012). (in Russian)

    Google Scholar 

  16. Mobley, C.D.: Terrestrial optics. Applied Electromagnetics and Optics Laboratory, SRI International, Menlo Park, California

    Google Scholar 

  17. Johnson, L.J.: The underwater optical channel. Department of engineering University of Warwick, p. 18 (2012)

    Google Scholar 

  18. Temperature, Salinity, Density and Ocean Circulation. http://ocean.stanford.edu/courses/bomc/chem/lecture_03.pdf

  19. Kostkin, I.V., Pushkin, V.A., Locmanov, A.A., Korsukov, I.D.: Algoritm uluchsheniya kachestva podvodnyh izobrazhenij [Algorithm for improving the quality of underwater images]. Vestn. RSREU 2(40), 40–46 (2012). (in Russian)

    Google Scholar 

  20. Kirillov, S.N., Kostkin, I.V., Dmitriev, V.T.: Opticheskij kanal peredachi videoizobrazhenij s podvodnyh mobilnyh robotov dlya raznyh tipov voln i klimaticheskih zon [Optical video transmission channel from underwater mobile robots for different types of waves and climatic zones]. Morskie informacionno-upravlyayushchie sistemy 3(6), 44–51 (2014). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Skonnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirillov, S., Dmitriev, V., Aronov, L., Skonnikov, P., Baukov, A. (2019). Improved Quality Video Transmission by Optical Channel from Underwater Mobile Robots. In: Dolinina, O., Brovko, A., Pechenkin, V., Lvov, A., Zhmud, V., Kreinovich, V. (eds) Recent Research in Control Engineering and Decision Making. ICIT 2019. Studies in Systems, Decision and Control, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-12072-6_20

Download citation

Publish with us

Policies and ethics