Skip to main content

Radiation Hardness by Design Techniques for 1 Grad TID Rad-Hard Systems in 65 nm Standard CMOS Technologies

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2018)

Abstract

The paper shows the radiation effects on 65 nm standard CMOS technology and RHBD (Radiation Hardening By Design) techniques developed to reduce the mosfets performance degradation. The paper is focused on the techniques to address extremely high Total Ionization Dose (TID) up to 1 Grad, which is the level required for the planned upgrade of the CERN’s LHC (HL-LHC). Today, only few data of single mosfets measurement at 1 Grad are presented in literature. These data are collected and transistors models are developed to presents, in this paper, the first system simulation results at 1 Grad conditions. As case of study, the performance reduction of two full-custom D flip-flops are presented, highlighting the robustness against radiation of CML technology for high-speed applications (10 Gbps).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadda, N.F., et al.: Incremental enhancement to SEU hardened 90 nm CMOS memory cell. In: Proceeding of RADECS 2010 (2010)

    Google Scholar 

  2. Clark, L., et al.: Optimizing radiation hard by design SRAM cells. IEEE Trans. Nucl. Sci. 54(6), 2028–2036 (2007)

    Article  Google Scholar 

  3. Lv, H., Sun, Y., et al.: Research on optimization design of radiation dose shield hardening for aerospace components. In: IEEE PHM-Harbin (2017)

    Google Scholar 

  4. Garcia, R., Brugger, M., et al.: Simplified SEE sensitivity screening for COTS components in space. IEEE Trans. Nucl. Sci. 64(2) (2017)

    Google Scholar 

  5. Sielewicz, K.M., Rinella, G.A., et al.: Experimental methods and results for the evaluation of triple modular redundancy SEU mitigation techniques with Xilinx Kintex-7 FPGA. In: IEEE Radiation Effects Data Workshop (REDW) (2017)

    Google Scholar 

  6. Sinclair, D., Dyer, J., Radiation effects and COTS parts in small SmallSats. In: SSC13, AIAA/Utah

    Google Scholar 

  7. Butler, J., et al.: Technical proposal for the phase-II upgrade of the CMS detector. In: CERN-LHCC-2015-010

    Google Scholar 

  8. Magazzù, G., Ciarpi, G., et al.: Design of a radiation-tolerant high-speed driver for Mach Zender modulators in high energy physics. In: IEEE ISCAS (2018)

    Google Scholar 

  9. Paternò, A., Pacher, L., et al.: New development on digital architecture for efficient pixel readout ASIC at extreme hit rate for HEP detectors at HL-LHC. In: IEEE NSS/MIC/RTSD (2016)

    Google Scholar 

  10. Saks, N.S., Ancona, M.G., et al.: Radiation effects in MOS capacitors with very thin oxides at 80 °K. IEEE Trans. Nucl. Sci. 31(6) (1984)

    Article  Google Scholar 

  11. Faccio, F., Michelis, S., et al.: Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm Mosfets. IEEE Trans. Nucl. Sci. 62(6) (2015)

    Article  Google Scholar 

  12. Anelli, G., Campbell, M., et al.: Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: practical design aspects. IEEE Trans. Nucl. Sci. 46(6) (1999)

    Article  Google Scholar 

  13. Faccio, F., Borghello, G., et al.: Influence of LDD spacers and H+ transport on the total-ionizing-dose response of 65 nm Mosfets irradiated to ultra-high doses. IEEE Trans. Nucl. Sci. 65(1) (2018)

    Article  Google Scholar 

  14. Menouni, M., Barbero, M., et al.: 1-Grad total dose evaluation of 65 nm CMOS technology for the HL-LHC upgrades. J. Instrum. 10 (2015)

    Article  Google Scholar 

  15. Ding, L., Geranrdin, S., et al.: Drain current collapse in 65 nm PMOS transistors after exposure to grad dose. IEEE Trans. Nucl. Sci. 62(6) (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Ciarpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciarpi, G., Saponara, S., Magazzù, G., Palla, F. (2019). Radiation Hardness by Design Techniques for 1 Grad TID Rad-Hard Systems in 65 nm Standard CMOS Technologies. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2018. Lecture Notes in Electrical Engineering, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-030-11973-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11973-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11972-0

  • Online ISBN: 978-3-030-11973-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics