Skip to main content

Efficient Ensemble Machine Learning Implementation on FPGA Using Partial Reconfiguration

  • Conference paper
  • First Online:
Book cover Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2018)

Abstract

Ensemble Machine Learning (EML) consists of the combination of multiple Artificial Intelligence algorithms. This paper presents an efficient FPGA implementation of an Ensemble based on Long Short-Term Memory Networks (LSTM). For an efficient implementation, the proposed design uses the Partial Reconfiguration function available for FPGAs. Results are presented in terms of resources utilization, reconfiguration speed, power consumption and maximum clock frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lo Sciuto, G., Susi, G., Cammarata e, G., Capizzi, G.: A spiking neural network-based model for anaerobic digestion process. In: IEEE 23rd International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) (2016)

    Google Scholar 

  2. Brusca, S., Capizzi, G., Lo Sciuto e, G., Susi, G.: A new design methodology to predict wind farm energy production by means of a spiking neural network based-system. Int. J. Numer. Model. Electron. Netw. Devices Fields 7 (2017)

    Google Scholar 

  3. Scarpato, N., Pieroni, A., Di Nunzio, L., Fallucchi, F.: E-health-IoT universe: a review. Int. J. Adv. Sci. Eng. Inf. Technol. 7(6), 2328–2336 (2017)

    Article  Google Scholar 

  4. Cardarilli, G.C., Cristini, A., Di Nunzio, L., Re, M., Salerno, M., Susi, G.: Spiking neural networks based on LIF with latency: simulation and synchronization effects. In: Asilomar Conference on Signals, Systems and Computers, pp. 1838–1842 (2013)

    Google Scholar 

  5. Khanal, G.M., Acciarito, S., Cardarilli, G.C., Chakraborty, A., Di Nunzio, L., Fazzolari, R., Cristini, A., Re, M., Susi, G.: Synaptic behaviour in ZnO-rGO composites thin film memristor. Electron. Lett. 53(5), 296–298 (2017)

    Article  Google Scholar 

  6. Acciarito, S., Cardarilli, G.C., Cristini, A., Nunzio, L.D., Fazzolari, R., Khanal, G.M., Re, M., Susi, G.: Hardware design of LIF with Latency neuron model with memristive STDP synapses. Integr. VLSI J. 59, 81–89 (2017)

    Article  Google Scholar 

  7. Khanal, G.M., Cardarilli, G., Chakraborty, A., Acciarito, S., Mulla, M.Y., Di Nunzio, L., Fazzolari, R., Re, M.: A ZnO-rGO composite thin film discrete memristor. IEEE, ICSE, art. no. 7573608, pp. 129–132 (2016)

    Google Scholar 

  8. Acciarito, S., Cristini, A., Di Nunzio, L., Khanal, G.M., Susi, G.: An a VLSI driving circuit for memristor-based STDP. PRIME 2016, art. no. 7519503 (2016)

    Google Scholar 

  9. Opitz, D.; Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198

    Article  Google Scholar 

  10. Polikar, R: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45

    Article  Google Scholar 

  11. Rokach, L: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39

    Article  MathSciNet  Google Scholar 

  12. Dalmasso, I., Galletti, I., Giuliano, R., Mazzenga, F.: WiMAX Networks for Emergency Management Based on UAVs. In: IEEE–AESS European Conference on Satellite Telecommunications. (IEEE ESTEL 2012), Rome, Italy, Oct. 2012, p. 1–6 (2010)

    Google Scholar 

  13. Giuliano, R., Mazzenga, F., Neri, A., Vegni, A.M.: Security access protocols in IoT capillary networks. IEEE Internet Things J. 4(3), 645–657 (2017)

    Article  Google Scholar 

  14. Vivado Design Suite UG909 Partial Reconfiguration

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long: Short-Term Memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Chang, A.X.M., Culurciello, E.: Hardware accelerators for recurrent neural networks on FPGA. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS)

    Google Scholar 

  17. Krstanovic, S., et al.: Ensembles of recurrent neural networks for robust time series forecasting. In: 2017 International Conference on Innovative Techniques and Applications of AI, Cambridge

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Xilinx Inc, for providing FPGA hardware and software tools by Xilinx University Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Di Nunzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardarilli, G.C. et al. (2019). Efficient Ensemble Machine Learning Implementation on FPGA Using Partial Reconfiguration. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2018. Lecture Notes in Electrical Engineering, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-030-11973-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11973-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11972-0

  • Online ISBN: 978-3-030-11973-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics