Skip to main content

Analysis of Cybersecurity Weakness in Automotive In-Vehicle Networking and Hardware Accelerators for Real-Time Cryptography

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2018)

Abstract

The work analyses the cybersecurity weakness in state-of-art automotive in-vehicle networks and discusses possible countermeasures at architecture level. Due to stringent real-time constraints (throughput and latency)  of fail-safe automotive applications, hardware accelerators are needed. A hardware accelerator design for AES (Advanced Encryption Standard)-128/256 calculation, the latter being already considered post-quantum resistant, is also presented together with implementation results in FPGA and 45 nm CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilsson, D.K., Larson, U.E., Picasso, F., Jonsson, E.: A first simulation of attacks in the automotive network communications protocol flexray. In: International Workshop on Computational Intelligence in Security for Information Systems, CISIS 2008, pp. 84–91. Springer, Heidelberg (2009)

    Google Scholar 

  2. Lin, C.W., Sangiovanni-Vincentelli, A.: Cyber-security for the controller area network (CAN) communication protocol. In: International Conference on Cyber Security, p. 17 (2012)

    Google Scholar 

  3. Wolf, M., Weimerskirch, A., Paar, C.: Secure In-Vehicle Communication, p. 95109. Springer, Heidelberg (2006)

    Google Scholar 

  4. Avatefipour, O., Malik, H.: State-of-the-art survey on in-vehicle network communication CAN-Bus security and vulnerabilities. Int. J. Comput. Sci. Netw. 6(6), 720–727 (2017)

    Google Scholar 

  5. Cho, K.-T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: 25th USENIX Security Symposium, Austin, TX, pp. 911–927 (2016)

    Google Scholar 

  6. dos Santos, E., Simpson, A., Schoop, D.: A formal model to facilitate security testing in modern automotive systems. In: Joint Workshop on Handling IMPlicit and EXplicit Knowledge in Formal System Development (IMPEX) and Formal and Model-Driven Techniques for Developing Trustworthy Systems, pp. 95–104 (2017)

    Google Scholar 

  7. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks-practical examples and selected short-term countermeasures. Reliab. Eng. Syst. Saf. 96(1), 11–25 (2011). Special Issue on Safecomp 2008

    Article  Google Scholar 

  8. Lukasiewycz, M., Mundhenk, P., Steinhorst, S.: Security-aware obfuscated priority assignment for automotive CAN platforms. ACM Trans. Des. Autom. Electron. Syst. 21(2) (2016)

    Article  Google Scholar 

  9. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani, M.T.M.: On the power of power analysis in the real world: a complete break of the KeeLoq code hopping scheme. In: Wagner, D. (ed.) Advances in Cryptology CRYPTO 2008, pp. 203–220. Springer, Heidelberg (2008)

    Google Scholar 

  10. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern automobile. In: IEEE Symposium on Security and Privacy, pp. 447–462 (2010)

    Google Scholar 

  11. Shreejith, S., Mundhenk, P., Ettner, A., Fahmy, S.A., Steinhorst, S., Lukasiewycz, M., Chakraborty, S.: Vega: a high performance vehicular ethernet gateway on hybrid FPGA. IEEE Trans. Comput. 66(10), 17901803 (2017)

    Article  MathSciNet  Google Scholar 

  12. Patsakis, C., Dellios, K., Bouroche, M.: Towards a distributed secure in-vehicle communication architecture for modern vehicles. Comput. Secur. 40, pp. 60–74 (2014)

    Article  Google Scholar 

  13. Sghaier, A., Zeghid, M., Machhout, M.: Fast hardware implementation of ECDSA signature scheme. In: 2016 International Symposium on Signal, Image, Video and Communications, pp. 343–348 (2016)

    Google Scholar 

  14. Ueda, H., Kurachi, R., Takada, H., Mizutani, T., Inoue, M., Horihata, S.: Security Authentication System for In-Vehicle Network. SEI Tech. Rev. 81 (2015)

    Google Scholar 

  15. Mundhenk, P., Paverd, A., Mrowca, A., Steinhorst, S., Lukasiewycz, M., Fahmy, S.A., Chakraborty, S.: Security in automotive networks: lightweight authentication and authorization. Trans. Des. Autom. Electron. Syst. 22(2), 25:125:27 (2017)

    Article  Google Scholar 

  16. Wang, Q., Sawhney, S.: VeCure: A practical security framework to protect the can bus of vehicles. In: 2014 International Conference on the Internet of Things (IOT), pp. 13–18 (2014)

    Google Scholar 

  17. Waszecki, P., Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Karri, R., Chakraborty, S.: Automotive electrical and electronic architecture security via distributed in-vehicle traffic monitoring. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(11), 17901803 (2017)

    Article  Google Scholar 

  18. Okhravi, H., Sheldon, F.T., Haines, J.: Data Diodes in Support of Trustworthy Cyber Infrastructure and Net-centric Cyber Decision Support, pp. 203–216. Springer (2013)

    Google Scholar 

  19. National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), 26 Nov 2001

    Google Scholar 

  20. Moody, D.: National Institute of Standards and Technology (NIST), Update on the NIST post-quantum cryptography project. https://csrc.nist.gov/CSRC/media/Presentations/Update-on-the-NIST-Post-Quantum-Cryptography-Proje/images-media/2_post-quantum_dmoody.pdf

Download references

Acknowledgements

This work has been partially supported by PRA2017 and EPI H2020 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Baldanzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldanzi, L., Crocetti, L., Bertolucci, M., Fanucci, L., Saponara, S. (2019). Analysis of Cybersecurity Weakness in Automotive In-Vehicle Networking and Hardware Accelerators for Real-Time Cryptography. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2018. Lecture Notes in Electrical Engineering, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-030-11973-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11973-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11972-0

  • Online ISBN: 978-3-030-11973-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics