Skip to main content

Introduction to Stem Cell Principles and Biology

  • Chapter
  • First Online:
  • 642 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

A stem cell is defined as an unspecialized cell that can both self-renew and give rise to differentiated progeny. In particular stem cells can divide to generate at least one cell that retains the stem cell identity, and can also give rise to progenitors, or precursor cells, which typically differentiate into tissue-specific cell types. Stem cells are derived from embryonic, fetal, or adult tissue and are broadly categorized accordingly. Recent advances in regenerative medicine support the development of new and emerging areas of integrative research including stem cells, gene- and cell-based therapies, and tissue engineering. The type of human cells, the use of growth factors and cytokines to stimulate the production, and growth and function of cells, along with the cell sources, have shown a significant therapeutic impact to date and represent a rapidly grown area of regenerative medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001;17:435–62.

    Article  CAS  PubMed  Google Scholar 

  2. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter MK, et al. Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn. 2004;229(2):243–58.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng D, Wang X, Xu RH. Concise review: one stone for multiple birds: generating universally compatible human embryonic stem cells. Stem Cells. 2016;34(9):2269–75.

    Article  CAS  PubMed  Google Scholar 

  5. Gordeeva OF. Pluripotent cells in embryogenesis and in teratoma formation. J Stem Cells. 2011;6(1):51–63.

    CAS  PubMed  Google Scholar 

  6. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  7. Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009;15(2):59–68.

    Article  CAS  PubMed  Google Scholar 

  8. Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol. 2008;9(9):725–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pennarossa G, et al. Erase and rewind: epigenetic conversion of cell fate. Stem Cell Rev. 2016;12(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  10. Madonna R. Human-induced pluripotent stem cells: in quest of clinical applications. Mol Biotechnol. 2012;52(2):193–203.

    Article  CAS  PubMed  Google Scholar 

  11. Trohatou O, Anagnou NP, Roubelakis MG. Human amniotic fluid stem cells as an attractive tool for clinical applications. Curr Stem Cell Res Ther. 2013;8(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  12. Roubelakis MG. Therapeutic potential of fetal mesenchymal stem cells. Curr Stem Cell Res Ther. 2013;8(2):115–6.

    Article  CAS  PubMed  Google Scholar 

  13. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med. 2009;4(3):423–33.

    Article  PubMed  Google Scholar 

  14. Atala A, et al. Principles of regenerative medicine. Academic Press, USA, 2nd ed. 2011. p. 1–1182.

    Google Scholar 

  15. De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  Google Scholar 

  16. Roubelakis MG, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 2007;16(6):931–52.

    Article  CAS  PubMed  Google Scholar 

  17. In’t Anker PS, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.

    Article  Google Scholar 

  18. Roubelakis MG, et al. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med. 2011;15(9):1896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsai MS, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450–6.

    Article  PubMed  Google Scholar 

  20. Delo DM, et al. Amniotic fluid and placental stem cells. Methods Enzymol. 2006;419:426–38.

    Article  CAS  PubMed  Google Scholar 

  21. Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91.

    Article  PubMed  Google Scholar 

  22. Klemmt P. Application of amniotic fluid stem cells in basic science and tissue regeneration. Organogenesis. 2012;8(3):76.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Di Landro G, Dresch C, Poirier O. Granulomonocyte colony-forming cells in cord blood. Nouv Rev Fr Hematol. 1980;22(4):371–82.

    PubMed  Google Scholar 

  24. Gluckman E, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gluckman E, Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy. 2005;7(3):219–27.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, et al. Ex vivo manipulation of umbilical cord blood-derived hematopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their transmigratory potential. Exp Hematol. 2003;31(12):1237–46.

    Article  CAS  PubMed  Google Scholar 

  27. Watt SM, Contreras M. Stem cell medicine: umbilical cord blood and its stem cell potential. Semin Fetal Neonatal Med. 2005;10(3):209–20.

    Article  PubMed  Google Scholar 

  28. Savarese TM, et al. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res. 2007;9(3):R29.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thierry D, et al. Hematopoietic stem cell potential from umbilical cord blood. Nouv Rev Fr Hematol. 1990;32(6):439–40.

    CAS  PubMed  Google Scholar 

  30. Soncini M, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1(4):296–305.

    Article  CAS  PubMed  Google Scholar 

  31. Lemischka IR, Raulet DH, Mulligan RC. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell. 1986;45(6):917–27.

    Article  CAS  PubMed  Google Scholar 

  32. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.

    Article  CAS  PubMed  Google Scholar 

  33. Bunting KD, Qu CK. The hematopoietic stem cell landscape. Methods Mol Biol. 2014;1185:3–6.

    Article  PubMed  Google Scholar 

  34. Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126(22):2443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015;125(17):2605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 2015;16(3):239–53.

    Article  CAS  PubMed  Google Scholar 

  37. Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015;2015:628767.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.

    Article  CAS  PubMed  Google Scholar 

  39. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  40. Rani S, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kornblum HI. Introduction to neural stem cells. Stroke. 2007;38(2):810–6.

    Article  PubMed  Google Scholar 

  43. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.

    Article  PubMed  Google Scholar 

  44. Lanza R, Langer R, Vacanti J. Principles of tissue engineering third edition preface to the second edition. Principles of Tissue Engineering. Academic Press, USA, 3rd ed. 2007. p. Xxxiii–Xxxiii.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Roubelakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roubelakis, M.G. (2019). Introduction to Stem Cell Principles and Biology. In: Gazouli, M., Theodoropoulos, G. (eds) Digestive System Diseases. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-030-11965-2_2

Download citation

Publish with us

Policies and ethics