Skip to main content

Severe Plastic Deformation as a Way to Produce Architectured Materials

  • Chapter
  • First Online:
Architectured Materials in Nature and Engineering

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 282))

Abstract

In this chapter, a group of processing techniques leading to desired materials architectures is discussed. They are based on severe plastic deformation (SPD) by shear combined with high hydrostatic pressure. Originally, these techniques were developed for imparting to the material an ultrafine grained (UFG) microstructure thus improving its mechanical performance characteristics. An added benefit of SPD processing in the context of architectured materials is its ability to tune the inner makeup of a hybrid material at a macroscopic scale. After a brief introduction to the available SPD processing techniques, we provide an analysis of architectured multiscale structures with UFG constituents they can produce. A target of this research is development of materials with a high specific strength and low overload sensitivity. Specific designs enabling a favourable combination of these properties are considered. An emphasis is put on structures that include soft layers whose presence delays strain localisation and failure of the hybrid material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.W. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 48, 825–847 (1935)

    Article  CAS  Google Scholar 

  2. V.M. Segal, V.I. Reznikov, A.E. Drobyshevsky, V.I. Kopylov, Plastic treatment of metals by simple shear. Russ. Metall. 1, 115–123 (1981)

    Google Scholar 

  3. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM 68, 1216–1226 (2016)

    Article  CAS  Google Scholar 

  4. Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782–817 (2013)

    Article  CAS  Google Scholar 

  5. A. Bachmaier, R. Pippan, Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 58, 41–62 (2013)

    Article  CAS  Google Scholar 

  6. N.S. Enikolopian, Superfast polymerization under high pressure and plastic flow. Macromol. Chem. 185, 1371–1381 (1984)

    Article  Google Scholar 

  7. V. Beloshenko, Y. Beygelzimer, Y. Voznyak, Solid-State Extrusion, Encyclopedia of Polymer Sciences (Wiley & Sons, New York, 2015). https://doi.org/10.1002/0471440264.pst343.pub2

    Book  Google Scholar 

  8. Y. Beygelzimer, R. Kulagin, Y. Estrin, L.S. Toth, H.S. Kim, M.I. Latypov, Twist extrusion as a potent tool for obtaining advanced engineering materials: a review. Adv. Eng. Mater. 19(8), 1600873 (2017). https://doi.org/10.1002/adem.201600873

    Article  CAS  Google Scholar 

  9. R. Lapovok, Y. Qi, H.P. Ng, V. Maier, Y. Estrin, Multicomponent materials from machining chips compacted by equal-channel angular pressing. J. Mater. Sci. 49, 1193–1204 (2014)

    Article  CAS  Google Scholar 

  10. O. Bouaziz, H.S. Kim, Y. Estrin, Architecturing of metal-based composites with concurrent nanostructuring: a new paradigm of materials design. Adv. Eng. Mater. 15, 336–340 (2013)

    Article  CAS  Google Scholar 

  11. M.I. Latypov, Y. Beygelzimer, R. Kulagin, V. Varyukhin, H.S. Kim, Toward architecturing of metal composites by twist extrusion. Mater. Res. Lett. 3, 161–168 (2015)

    Article  CAS  Google Scholar 

  12. Y. Beygelzimer, Y. Estrin, R. Kulagin, Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing. Adv. Eng. Mater. 17, 1853–1861 (2015)

    Article  CAS  Google Scholar 

  13. J.Y. Kang, J.G. Kim, H.W. Park, H.S. Kim, Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion. Sci. Rep. 6, 26590 (2016)

    Article  CAS  Google Scholar 

  14. X.L. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Extraordinary strain hardening by gradient structure. PNAS 111, 7197–7201 (2013)

    Article  Google Scholar 

  15. T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011)

    Article  CAS  Google Scholar 

  16. J. Lu, P.S. Mai, C.S. Wen, in Nanostructured-Lattices Produced by Surface Mechanical Attrition Treatment Method, Patent US20150033814, 2015

    Google Scholar 

  17. L. Ghalandari, M.M. Mahdavian, M. Reihanian, M. Mahmoudiniya, Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): A study of microstructure and mechanical properties. Mater. Sci. Eng., A 661, 179–186 (2016)

    Article  CAS  Google Scholar 

  18. K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375–377, 38–45 (2004)

    Article  Google Scholar 

  19. O. Bouaziz, Y. Estrin, H.S. Kim, Severe plastic deformation by the cone-cone method: potential for producing ultrafine grained sheet material. Rev. Met. Paris 104, 318–322 (2007)

    Article  Google Scholar 

  20. R. Lapovok, A. Pougis, V. Lemiale, D. Orlov, L.S. Toth, Y. Estrin, Severe plastic deformation processes for thin samples. J. Mater. Sci. 45, 4554 (2010)

    Article  CAS  Google Scholar 

  21. R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881–981 (2006)

    Article  CAS  Google Scholar 

  22. A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53, 893–979 (2008)

    Article  CAS  Google Scholar 

  23. A. Rosochowski, Severe Plastic Deformation Technology (Whittles Publishing, Dunbeath, Scotland, 2017)

    Google Scholar 

  24. A. Azushima, R. Kopp, A. Korhonen et al., Severe plastic deformation (SPD) processes for metals. CIRP Ann. Manuf. Technol. 57, 716–735 (2008)

    Article  Google Scholar 

  25. C.P. Wang, F.G. Li, L. Wang et al., Review on modified and novel techniques of severe plastic deformation. Sci. Chin. Technol. Sci. 55, 2377–2390 (2012)

    Article  Google Scholar 

  26. Yu. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, H. Hahn, High pressure torsion extrusion as a new severe plastic deformation process. Mater. Sci. Eng., A 664, 247–256 (2016)

    Article  CAS  Google Scholar 

  27. Y. Beygelzimer, D. Orlov, V. Varyukhin, A new severe plastic deformation method: twist extrusion/ultrafine grained materials II, in Proceedings of a Symposium held during the 2002 TMS Annual Meeting I, Seattle, Washington, 2002, pp. 297–304

    Google Scholar 

  28. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials–development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579–583 (1999)

    Article  CAS  Google Scholar 

  29. W.L. Li, N.R. Tao, K. Lu, Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Mater. 59, 546–549 (2008)

    Article  CAS  Google Scholar 

  30. Z. Chen, M.H. Colliander, G. Sundell, R.L. Peng, J. Zhou, S. Johansson, J. Moverare, Nano-scale characterization of white layer in broached Inconel 718. Mater. Sci. Eng., A 684, 373–384 (2017)

    Article  CAS  Google Scholar 

  31. Z. Pu, G.L. Song, S. Yang et al., Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros. Sci. 57, 192–201 (2012)

    Article  CAS  Google Scholar 

  32. Z. Yin, X. Yang, X. Ma et al., Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment. Mater. Design 105, 89–95 (2016)

    Article  CAS  Google Scholar 

  33. Y.L. Wang, A. Molotnikov, M. Diez, R. Lapovok, H.E. Kim, J.T. Wang, Y. Estrin, Gradient structure produced by three roll planetary milling: numerical simulation and microstructural observations. Mater. Sci. Eng. A 639, 165–172 (2015)

    Article  CAS  Google Scholar 

  34. M. Diez, H.J. Kim, V.N. Serebryanyi, S.V. Dobatkin, Y. Estrin, Improving the mechanical properties of pure magnesium by three-roll planetary milling. Mater. Sci. Eng. A 612, 287–292 (2014)

    Article  CAS  Google Scholar 

  35. O. Prokof’eva, Y. Beygelzimer, R. Kulagin, Y. Estrin, V. Varyukhin, Preparation of UFG composites with large uniform elongation by twist extrusion: mathematical modeling of the process. Russ Metall. 2, 76–81 (2017)

    Google Scholar 

  36. S. Khoddam, Y. Estrin, H.S. Kim et al., Torsional and compressive behaviours of a hybrid material: spiral fibre reinforced metal matrix composite. Mater. Design 85, 404–411 (2015)

    Article  CAS  Google Scholar 

  37. O. Bouaziz, Geometrically induced strain hardening. Scripta Mater. 68, 28–30 (2013)

    Article  CAS  Google Scholar 

  38. C.W. Passchier, R.A.J. Trouw, Microtectonics (Springer, Berlin, Heidelberg, 2005)

    Google Scholar 

  39. Y. Beygelzimer, Ruslan Z. Valiev, V. Varyukhin, Simple shear: double-stage deformation. Mater. Sci. Forum 667–669, 97–102 (2011)

    Google Scholar 

  40. R. Kulagin, Y. Beygelzimer, Y. Ivanisenko, A. Mazilkin, B. Straumal, H. Hahn, High pressure torsion: from laminar flow to turbulence, in 2017 IOP Conference Series: Materials Science and Engineering, vol. 194 (2017), pp. 012045. https://doi.org/10.1088/1757-899x/194/1/012045

  41. R. Kulagin, Y. Beygelzimer, Y. Ivanisenko, A. Mazilkin, B. Straumal, H. Hahn, Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Mater. Lett. 222, 172–175 (2018)

    Google Scholar 

  42. M. Pouryazdan, B.J.P. Kaus, A. Rack, A. Ershov, H. Hahn, Mixing instabilities during shearing of metals. Nat. Commun. 8, 1611 (2017)

    Google Scholar 

  43. V. Beloshenko, Y. Beygelzimer, Y. Voznyak, B. Savchenko, V. Dmitrenko, ECAP of polymer billets obtained by the FDM process. Metal. Form. Russ. 44, 108–114 (2017)

    Google Scholar 

  44. S. Timoshenko, Theory of Elasticity (McGraw-Hill, New York, 2001)

    Google Scholar 

  45. M. Kawasaki, H.J. Lee, J. Jang, T.G. Langdon, Strengthening of metals through severe plastic deformation. Adv. Mater. Sci. 48, 13–24 (2017)

    CAS  Google Scholar 

  46. T. Sekiguchi, K. Ono, H. Fujiwara et al., New microstructure design for commercially pure titanium with outstanding mechanical properties by mechanical milling and hot roll sintering. Mater. Trans. 51, 39–45 (2010)

    Article  CAS  Google Scholar 

  47. D. Orlov, H. Fujiwara, K. Ameyama, Obtaining copper with harmonic structure for the optimal balance of structure-performance relationship. Mater. Trans. 54, 1549–1553 (2013)

    Article  CAS  Google Scholar 

  48. Z. Zhang, S.K. Vajpai, D. Orlov, K. Ameyama, Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater. Sci. Eng., A 598, 106–113 (2014)

    Article  CAS  Google Scholar 

  49. S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Tech. 67, 1191–1203 (2013)

    Article  Google Scholar 

  50. W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)

    Article  CAS  Google Scholar 

  51. J.B. Roca, P. Vaishnav, E.R.H. Fuchs, M.G. Morgan, Policy needed for additive manufacturing. Nature Mater. 15, 815–818 (2016)

    Article  Google Scholar 

  52. Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699–1709 (2004)

    Article  CAS  Google Scholar 

  53. Z.P. Bažant, L. Cedolin, Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories (Oxford University Press, New York, 2003)

    Google Scholar 

  54. G.M. Ickovich, L.S. Minin, A.I. Vinokurov, A Guide for Solving Problems on the Resistance of Materials (High school, Moscow, 1999)

    Google Scholar 

  55. E.J. Haug, K.K. Choi, V. Komkov, in Design Sensitivity Analysis of Structural Systems (Academic Press, Inc., Harcourt Brace Jovanovich Publishers, New York, 1986)

    Google Scholar 

  56. D.C. Drukker, On the postulate of material stability in the mechanics of continua. J Mechanique 3, 235–249 (1964)

    Google Scholar 

  57. Y. Beygelzimer, Vortices and mixing in metals during severe plastic deformation. Mater. Sci. Forum 683, 213–224 (2011)

    Article  CAS  Google Scholar 

  58. U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater Sci. 48, 171–273 (2003)

    Article  CAS  Google Scholar 

  59. F. Barthelat, Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. Int. Mater. Rev. 60, 413–430 (2015)

    Article  CAS  Google Scholar 

  60. R. Hill, Mathematical Theory of Plasticity (Oxford University Press, New York, 1950)

    Google Scholar 

  61. C. Chen, Y. Beygelzimer, L.S. Toth, Y. Estrin, R. Kulagin, Tensile yield strength of a material pre-processed by simple shear. J. Eng. Mater. Technol. 138, 031010 (2016)

    Article  Google Scholar 

  62. Y. Qi, R. Lapovok, Y. Estrin, Microstructure and electrical conductivity of aluminium/steel bimetallic rods processed by severe plastic deformation. J. Mater. Sci. 51, 6860–6875 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

YB would like to express his gratitude to the State Fund for Fundamental Research of the Ukraine for financial support through grant F71/56-2016.

RK acknowledges funding support from the German Research Foundation (DFG) through Grant #IV98/8-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Beygelzimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beygelzimer, Y., Kulagin, R., Estrin, Y. (2019). Severe Plastic Deformation as a Way to Produce Architectured Materials. In: Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P. (eds) Architectured Materials in Nature and Engineering. Springer Series in Materials Science, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-11942-3_8

Download citation

Publish with us

Policies and ethics