Skip to main content

An Overview of RFID Benefits and Limitations: Hardware Solution for Multipath Reduction

  • Conference paper
  • First Online:
Book cover Information Technology and Systems (ICITS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 918))

Included in the following conference series:

Abstract

RFID benefits and limitations are outlined in this work, showing some future challenges enabling RFID technology to play a key role in the Internet of Things. Some open issues and possible solutions are discussed to improve the reliability of RFID systems. In particular, the multipath phenomena is addressed, proposing metamaterial absorbers as a possible hardware solution for multipath reduction in indoor scenario. The potentialities of a fractal based metamaterial absorber are demonstrated. A very high versatile MA-cell is designed, offering both miniaturized sizes as well as multi-band and/or broad-band behavior, within the RFID UHF-band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley, Hoboken (2003)

    Book  Google Scholar 

  2. Vita, G.D., Iannaccone, G.: Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Trans. Microwave Theor. Technol. 53(9), 2978–2990 (2005)

    Article  Google Scholar 

  3. Chawla, V., Ha, D.-S.: An overview of passive RFID. IEEE Appl. Pract. 11–17 (2007)

    Article  Google Scholar 

  4. Liu, H., Bolic, M., Nayak, A., Stojmenovi, I.: Integration of RFID and wireless sensor networks. In: Encyclopedia on Ad Hoc and Ubiquitous Computing, pp. 319–347. World Scientific (2009)

    Google Scholar 

  5. Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C., Marrocco, G.: RFID technology for IoT-based personal healthcare in smart spaces. IEEE Internet of Things J. 1(2), 144–152 (2014)

    Article  Google Scholar 

  6. Bhattacharyya, R., Floerkemeier, C., Sarma, S.: RFID tag antenna based temperature sensing. In: Proceedings of IEEE International Conference on RFID, pp. 8–15 (2010)

    Google Scholar 

  7. Manzari, S., Occhiuzzi, C., Newell, S., Catini, A., Di Natale, C., Marrocco, G.: Humidity sensing by polymer-loaded UHF RFID antennas. IEEE Sens. J. 12(9), 2851–2858 (2012)

    Article  Google Scholar 

  8. Occhiuzzi, C., Rida, A., Marrocco, G., Tentzeris, M.: RFID passive gas sensor integrating carbon nanotubes. IEEE Trans. Microw. Theor. Technol. 59(10), 2674–2684 (2011)

    Article  Google Scholar 

  9. Maple, C.: Security and privacy in the Internet of Things. J. Cyber Policy 2(2), 155–184 (2017)

    Article  Google Scholar 

  10. Nikitin, P.V., Rao, K.V.S., Lam, S.F., Pillai, V., Martinez, R., Heinrich, H.: Power reflection coefficient analysis for complex impedances in RFID tag design. IEEE Trans. Microw. Theor. Technol. 53(9), 2721–2725 (2005)

    Article  Google Scholar 

  11. Banerjee, S.R., Jesme, R., Sainati, R.A.: Performance analysis of short range UHF propagation as applicable to passive RFID. In: Proceedings of IEEE International Conference on RFID, Grapevine, TX, pp. 30–36 (2007)

    Google Scholar 

  12. Griffin, J.D., Durgin, G.D., Haldi, A., Kippelen, B.: RF tag antenna performance on various materials using radio link budgets. IEEE Antennas Wirel. Propag. Lett. 5, 247–250 (2006)

    Article  Google Scholar 

  13. Lazaro, A., Girbau, D., Salias, D.: Radio link budgets for UHF RFID on multipath environments. IEEE Trans. Antennas Propag. 57(4), 1241–1251 (2009)

    Article  Google Scholar 

  14. Saleh, A.A., Valenzuela, R.A.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. SAC 5(2), 128–137 (1987)

    Article  Google Scholar 

  15. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  Google Scholar 

  16. Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, 98–120 (2012)

    Google Scholar 

  17. Venneri, F., Costanzo, S., Di Massa, G.: Fractal-shaped metamaterial absorbers for multireflections mitigation in the UHF band. IEEE Antennas Wirel. Propag. Lett. 17(2), 255–258 (2018)

    Article  Google Scholar 

  18. https://www.impinj.com/

  19. Lazaro, A., Girbau, D., Villarino, R.: Effects of interferences in UHF RFID systems. Prog. Electromagnet. Res. PIER 98, 425–443 (2009)

    Article  Google Scholar 

  20. Álvarez López, Y., Franssen, J., Álvarez Narciandi, G., Pagnozzi, J., González-Pinto Arrillaga, I., Las-Heras Andrés, F.: RFID Technology for management and tracking: e-health applications. Sensors 18(8), 2663 (2018)

    Article  Google Scholar 

  21. Wiseman, Y.: Compression Scheme for RFID Equipment. IEEE International Conference on Electro Information Technology (EIT 2016), North Dakota, USA, 387–392, (2016)

    Google Scholar 

  22. Okano, Y., Ogino, S., Ishikawa, K.: Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system. IEEE Trans. Microw. Theor. Technol. 60(8), 2456–2464 (2012)

    Article  Google Scholar 

  23. Costa, F., Genovesi, S., Monorchio, A., Manara, G.: Low-cost metamaterial absorbers for sub-GHz wireless systems. IEEE Antennas Wirel. Propag. Lett. 13, 27–30 (2014)

    Article  Google Scholar 

  24. Costa, F., Genovesi, S., Monorchio A., Manara, G.: Perfect metamaterial absorbers in the ultra-high frequency range. In: International Symposium on Electromagnetic Theory, Hiroshima (2013)

    Google Scholar 

  25. Zuo, W., Yang, Y., He, X., Zhan, D., Zhang, Q.: A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas Wirel. Propag. Lett. https://doi.org/10.1109/lawp.2016.2574885

    Article  Google Scholar 

  26. Costanzo, S., Venneri, F.: Miniaturized fractal reflectarray element using fixed-size patch. IEEE Antennas Wirel. Propag. Lett. 13, 1437–1440 (2014)

    Article  Google Scholar 

  27. Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A., Raffo A.: Fractal reflectarray antennas: state of art and new opportunities. Int. J. Antennas Propag. (2016). https://doi.org/10.1155/2016/7165143. Article ID 7165143

    Article  Google Scholar 

  28. Venneri, F., Costanzo, S., Di Massa, G., Raffo, A.: Multi-band designs of fractal microwave absorbers. In: WorldCIST 2018, Advances in Intelligent Systems and Computing, vol. 746, Springer, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Costanzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venneri, F., Costanzo, S. (2019). An Overview of RFID Benefits and Limitations: Hardware Solution for Multipath Reduction. In: Rocha, Á., Ferrás, C., Paredes, M. (eds) Information Technology and Systems. ICITS 2019. Advances in Intelligent Systems and Computing, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-030-11890-7_81

Download citation

Publish with us

Policies and ethics