Skip to main content

Model Predictive Control

  • Chapter
  • First Online:
Robust and Fault-Tolerant Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 197))

Abstract

The chapter contains the results of the original research dealing with robust and fault-tolerant predictive control schemes. The first part of the chapter is devoted to nonlinear predictive control developed by means of neural networks. Some of the most important issues connected with optimization and stability are investigated in detail. The next part introduces the sensor fault-tolerant control (For this purpose, predictive control is equipped with a fault-diagnosis block.) Binary diagnostic matrix as well as multivalued diagnostic matrix are used in this context. The proposed control strategy is tested using the tank unit example provided. We develop a robust version of predictive control based on a robust model of a plant. We investigate two approaches: uncertainty modelling using model error modelling and statistical uncertainty estimation via statistical analysis. The proposed control schemes are tested on the example of a pneumatic servomechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandri, A., Cervellera, C., Gaggero, M.: Predictive control of container flows in maritime intermodal terminals. IEEE Trans. Control Syst. Technol. 21, 1423–1431 (2013)

    Article  Google Scholar 

  2. Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS. Oxford, UK (2007)

    MATH  Google Scholar 

  3. Bemporad, A.: A predictive controller with artificial lyapunov function for linear systems with input/state constraints. Automatica 34(10), 1255–1260 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Garulli, A., Vicino, A., Tesi A. (eds.) Robustness in Identification and Control. Lecture Notes in Control and Information Sciences, pp. 207–226. Springer, London (1999)

    Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming. Optimization and Computation Series, 2nd edn. Athena Scientific, Belmont (1999)

    Google Scholar 

  6. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Breger, L., How, J.P.: Nonlinear model predictive control technique for unmaned air vehicles. J. Guid. Control Dyn. 29(5), 1179–1188 (2006)

    Article  Google Scholar 

  8. Camacho, E.F., Bordóns, C.: Model Predictive Control, 2nd edn. Springer, London (2007)

    Book  Google Scholar 

  9. Clarke, D.W., Scattolini, R.: Constrained receding-horizon predictive control. IEE Proc. D 138(4), 347–354 (1991)

    Article  Google Scholar 

  10. Czajkowski, A., Patan, K., Szymański, M.: Application of the state space neural network to the fault tolerant control system of the PLC-controlled laboratory stand. Eng. Appl. Artif. Intell. 30, 168–178 (2014)

    Article  Google Scholar 

  11. Ducard, G.J.J.: Fault-tolerant Flight Control and Guidance Systems. Practical Methods for Small Unmanned Aerial Vehicles. Advances in Industrial Control. Springer, London (2009)

    Google Scholar 

  12. Fedorov, V.V., Hackl, P.: Model-Oriented Design of Experiments. Lecture Notes in Statistics. Springer, New York (1997)

    Book  Google Scholar 

  13. Gossner, J.R., Kouvaritakis, B., Rossiter, J.A.: Stable generalized predictive control with constraints and bounded disturbances. Automatica 33(4), 551–568 (1997)

    Article  MathSciNet  Google Scholar 

  14. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice-Hall, New Jersey (1999)

    Google Scholar 

  15. Hess, D.P., Soom, A.: Friction at a lubricated line contact operating at oscillating sliding velocities. J. Tribol. 112, 147–152 (1990)

    Article  Google Scholar 

  16. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  17. Joosten, D.A., Maciejowski, J.: MPC design for fault-tolerant flight control purposes based upon an existing output feedback controller. In: Proceedings of 7th International Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2009 Barcelona, Spain, 30th June–3rd July 2009 (2009). (CD-ROM)

    Google Scholar 

  18. Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57(2), 265–293 (1988)

    Article  MathSciNet  Google Scholar 

  19. Kim, Y.H., Kwon, W.H., Lee, Y.I.: Min-max generalized predictive control with stability. Comput. Chem. Eng. 22(12), 1851–1858 (1998)

    Article  Google Scholar 

  20. Koerber, A., King, R.: Combined feedback-feedforward control of wind turbines using state-constrained model predictive control. IEEE Trans. Control Syst. Technol. 21, 1117–1128 (2013)

    Article  Google Scholar 

  21. Korbicz, J., Kościelny, J., Kowalczuk, Z., Cholewa, W. (eds.): Fault Diagnosis. Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

    Google Scholar 

  22. Kościelny, J.M., Bartyś, M., Syfert, M.: Method of multiple fault isolation in large scale systems. IEEE Trans. Control Syst. Technol. 20, 1302–1310 (2012)

    Article  Google Scholar 

  23. Li, Z., Xia, Y., Su, C.Y., Deng, J., Fu, J., He, W.: Missile guidance law based on robust model predictive control using neural-network optimization. IEEE Trans. Neural Netw. Learn. Syst. 26, 1803–1809 (2015)

    Article  MathSciNet  Google Scholar 

  24. Limon, D., Bravo, J., Alamo, T., Camacho, E.F.: Robust MPC of constrained nonlinear systems based on interval arithmetic. IEE Proc. Part D. Control Theory Appl. 152, 325–332 (2005)

    Google Scholar 

  25. Maciejowski, J.: Predictive Control with Constraints. Prentice-Hall, Harlow (2002)

    MATH  Google Scholar 

  26. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  27. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng. 23, 667–682 (1999)

    Article  Google Scholar 

  28. Nelles, O.: Nonlinear System Identification. From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2001)

    MATH  Google Scholar 

  29. Nørgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)

    Book  Google Scholar 

  30. Nørgaard, M., Sørensen, P.H., Poulsen, N., Ravn, O., Hansen, L.: Intelligent predictive control of nonlinear processes using neural networks. In: Proceedings of the 1996 IEEE International Symposium on Intelligent Control Dearborn, MI, September 15–18, 1996, pp. 301–306 (1996)

    Google Scholar 

  31. Noura, K., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault Tolerant Control Systems. Design and Practical Applications. Advanced in Industrial Control. Springer, London (2009)

    Book  Google Scholar 

  32. Patan, K.: Approximation of state-space trajectories by locally recurrent globally feed-forward neural networks. Neural Netw. 21, 59–63 (2008)

    Article  Google Scholar 

  33. Patan, K.: Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes. Lecture Notes in Control and Information Sciences. Springer, Berlin (2008)

    Google Scholar 

  34. Patan, K.: Neural network based model predictive control: fault tolerance and stability. IEEE Trans. Control Syst. Technol. 23, 1147–1155 (2015)

    Article  Google Scholar 

  35. Patan, K.: Two stage neural network modelling for robust model predictive control. ISA Trans. 72, 56–65 (2018)

    Article  Google Scholar 

  36. Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: a fault tolerant control study. Appl. Math. Comput. Sci. 22(1), 225–237 (2012)

    MATH  Google Scholar 

  37. Patan, K., Korbicz, J.: Sensor fault estimation in the framework of model predictive control. boiler case study. In: Proceedings of 8th International Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2012 Mexico City, Mexico, 2012 (2012). (CD-ROM)

    Google Scholar 

  38. Patan, K., Patan, M., Kowalów, D.: Optimal sensor selection for model identification in iterative learning control of spatio-temporal systems. In: 55th IEEE Conference on Decision and Control (CDC) (2016)

    Google Scholar 

  39. Patan, K., Witczak, P.: Robust model predictive control using neural networks. In: IEEE International Symposium on Intelligent Control, ISIC 2014, pp. 1107–1112. Antibes, France (2014)

    Google Scholar 

  40. Patan, M.: Sensor Networks Scheduling for Identification of Distributed Systems. Lecture Notes in Control and Information Sciences, vol. 425. Springer, Berlin (2012)

    Google Scholar 

  41. Rawlings, J.B., Muske, K.R.: Stability of constrained receding horizon control. IEEE Trans. Autom. Control 38(10), 1512–1516 (1993)

    Article  MathSciNet  Google Scholar 

  42. Scokaert, P., Clarke, D.W.: Stabilizing properties of constrained predictive control. IEE Proc. Control Theory Appl. 141(5), 295–304 (1994)

    Article  Google Scholar 

  43. Scokaert, P., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive (Feasibility implies stability). IEEE Trans. Autom. Control 44(3), 648–654 (1999)

    Article  MathSciNet  Google Scholar 

  44. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. Analysis and Design, 2nd edn. Wiley, New York (2005)

    Google Scholar 

  45. Sourander, M., Vermasvuori, M., Sauter, D., Liikala, T., Jämsä-Jounela, S.L.: Fault tolerant control for a dearomatisation process. J. Process. Control 19, 1091–1102 (2009)

    Article  Google Scholar 

  46. Staroswiecki, M., Yang, H., Jiang, B.: Active fault tolerant control based on progressive accomodation. Automatica 43(12), 2070–2076 (2007)

    Article  MathSciNet  Google Scholar 

  47. Tatjewski, P.: Advanced Control of Industrial Processes. Springer, London (2007)

    MATH  Google Scholar 

  48. Tatjewski, P.: Disturbance modeling and state estimation for offset-free predictive control with state-space process models. Int. J. Appl. Math. Comput. Sci. 24(2), 313–323 (2014)

    Article  MathSciNet  Google Scholar 

  49. Wang, L.: Model Predictive Control System Design and Implementation Using MATLAB. Springer, London (2009)

    MATH  Google Scholar 

  50. Yan, Z., Wang, J.: Robust model predictive control of nonlinear systems with unmodelled dynamics and bounded uncertainties based on neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 457–469 (2014)

    Article  Google Scholar 

  51. Zangwill, W.I.: Nonlinear programming via penalty functions. Manag. Sci. 13, 344–358 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Patan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patan, K. (2019). Model Predictive Control. In: Robust and Fault-Tolerant Control. Studies in Systems, Decision and Control, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-11869-3_4

Download citation

Publish with us

Policies and ethics