Skip to main content

Calibration Uncertainty and Model-Based Analyses with Applications to Ovarian Cancer Modeling

  • Chapter
  • First Online:
Women in Industrial and Systems Engineering

Part of the book series: Women in Engineering and Science ((WES))

  • 850 Accesses

Abstract

Model-based analyses for comparative analyses within medical decision making require the development of a model of the disease that is being examined. This involves the specification of the model structure and the calibration of model parameters so that model outcomes are consistent with observable disease-related data. There is rarely a unique set of model parameters that are consistent with observable data, and such parameter sets can vary significantly. This phenomenon is known as “calibration uncertainty” and is especially prevalent when models address preclinical phases of the disease. Because model parameters influence comparative analyses, examination of the impact of calibration uncertainty on recommendations derived from the analysis is crucial to developing confidence in the recommendations. In this chapter, we present an approach to the characterization and systematic examination of the set of models that provide plausible representations of the disease. We illustrate our approach within the context of ovarian cancer. In doing so, we illustrate the impact of calibration uncertainty on the potential for early detection of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Cancer Society (2017) Cancer facts & figures 2017. American Cancer Society, Atlanta

    Google Scholar 

  • Anderson GL, McIntosh M, Wu L, Barnett M, Goodman G, Thorpe JD, Bergan L, Thornquist MD, Scholler N, Kim N et al (2010) Assessing lead time of selected ovarian cancer biomarkers: a nested case–control study. J Natl Cancer Inst 102(1):26–38

    Article  Google Scholar 

  • Arias E, Heron M, Xu J (2016) United states life tables, 2012. Natl Vital Stat Rep 65(8):14–15

    Google Scholar 

  • Boyd J, Sonoda Y, Federici MG, Bogomolniy F, Rhei E, Maresco DL, Saigo PE, Almadrones LA, Barakat RR, Brown CL et al (2000) Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA 283(17):2260–2265

    Article  Google Scholar 

  • Brown PO, Palmer C (2009) The preclinical natural history of serous ovarian cancer: defining the target for early detection. PLoS Med 6(7):1–14

    Article  Google Scholar 

  • Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, Reding DJ, Greenlee RT, Yokochi LA, Kessel B, et al (2011) Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA 305(22):2295–2303

    Article  Google Scholar 

  • Capocaccia R, De Angelis R (1997) Estimating the completeness of prevalence based on cancer registry data. Stat Med 16(4):425–440

    Article  Google Scholar 

  • Chambers SK, Hess LM (2008) Ovarian cancer prevention. In: Alberts DS, Hess LM (eds) Fundamentals of cancer prevention, Chap. 17. Springer, Berlin, pp 447–473

    Google Scholar 

  • Chen JV, Higle JL, Hintlian M (2018) A Systematic approach for examining the impact of calibration uncertainty in disease modeling. Comput Manage Sci 15:541–561

    Article  MathSciNet  Google Scholar 

  • Cutler SJ, Young JL (eds) (1975) Third national cancer survey: incidence data, national cancer institute monograph 41, DHEW Publication No. (NIH) 75-787. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Drescher CW, Hawley S, Thorpe JD, Marticke S, McIntosh M, Gambhir SS, Urban N (2012) Impact of screening test performance and cost on mortality reduction and cost-effectiveness of multimodal ovarian cancer screening. Cancer Prev Res 5(8):1015–1024

    Article  Google Scholar 

  • Havrilesky LJ, Sanders GD, Kulasingam S, Myers ER (2008) Reducing ovarian cancer mortality through screening: is it possible, and can we afford it? Gynecol Oncol 111(2):179–187

    Article  Google Scholar 

  • Havrilesky LJ, Sanders GD, Kulasingam S, Chino JP, Berchuck A, Marks JR, Myers ER (2011) Development of an ovarian cancer screening decision model that incorporates disease heterogeneity. Cancer 117(3):545–553

    Article  Google Scholar 

  • Jacobs IJ, Menon U, Ryan A, Gentry-Maharaj A, Burnell M, Kalsi JK, Amso NN, Apostolidou S, Benjamin E, Cruickshank D et al (2016) Ovarian cancer screening and mortality in the UK collaborative trial of ovarian cancer screening (UKCTOCS): a randomised controlled trial. Lancet 387(10022):945–956

    Article  Google Scholar 

  • Katsube Y, Berg J, Silverberg S (1982) Epidemiologic pathology of ovarian tumors: a histopathologic review of primary ovarian neoplasms diagnosed in the Denver Standard Metropolitan Statistical Area, 1 July–31 December 1969 and 1 July–31 December 1979. Int J Gynecol Pathol 1(1):3–16

    Article  Google Scholar 

  • Keshavarz H, Hillis SD, Kieke BA, Marchbanks PA (2002) Hysterectomy surveillance—United States, 1994–1999. MMWR CDC Surveill Summ 51:1–8

    Google Scholar 

  • Menon U, Gentry-Maharaj A, Hallett R, Ryan A, Burnell M, Sharma A, Lewis S, Davies S, Philpott S, Lopes A et al (2009) Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK collaborative trial of ovarian cancer screening (UKCTOCS). Lancet Oncol 10(4):327–340

    Article  Google Scholar 

  • Merrill RM (2006) Impact of hysterectomy and bilateral oophorectomy on race-specific rates of corpus, cervical, and ovarian cancers in the United States. Ann Epidemiol 16(12):880–887

    Article  Google Scholar 

  • Merrill RM, Capocaccia R, Feuer EJ, Mariotto A (2000) Cancer prevalence estimates based on tumour registry data in the surveillance, epidemiology, and end results (SEER) program. Int J Epidemiol 29(2):197–207

    Article  Google Scholar 

  • Moyer VA (2012) Screening for ovarian cancer: U.S. preventive services task force reaffirmation recommendation statement. Ann Intern Med 157(12):900–904

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  Google Scholar 

  • Partridge E, Greenlee RT, Xu JL, Kreimer AR, Williams C, Riley T, Reding DJ, Church TR, Kessel B, Johnson CC et al (2009) Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol 113(4):775–782

    Article  Google Scholar 

  • Permuth-Wey J, Sellers TA (2009) Epidemiology of ovarian cancer. Humana Press, Totowa, pp 413–437

    Book  Google Scholar 

  • Schapira MM, Matchar DB, Young MJ (1993) The effectiveness of ovarian cancer screening: a decision analysis model. Ann Intern Med 118(11):838–843

    Article  Google Scholar 

  • Schorge JO, Modesitt SC, Coleman RL, Cohn DE, Kauff ND, Duska LR, Herzog TJ (2010) SGO white paper on ovarian cancer: etiology, screening and surveillance. Gynecol Oncol 119(1): 7–17

    Article  Google Scholar 

  • Skates SJ, Singer DE (1991) Quantifying the potential benefit of CA 125 screening for ovarian cancer. J Clin Epidemiol 44(4):365–380

    Article  Google Scholar 

  • Urban N, Drescher C, Etzioni R, Colby C (1997) Use of a stochastic simulation model to identify an efficient protocol for ovarian cancer screening. Control Clin Trials 18(3):251–270

    Article  Google Scholar 

  • Wingo PA, Huezo CM, Rubin GL, Ory HW, Peterson HB (1985) The mortality risk associated with hysterectomy. Am J Obstet Gynecol 152(7):803–808

    Article  Google Scholar 

  • Yabroff KR, Lamont EB, Mariotto A, Warren JL, Topor M, Meekins A, Brown ML (2008) Cost of care for elderly cancer patients in the United States. J Natl Cancer Inst 100(9):630–641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia L. Higle .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Ovarian Cancer Data

Figures 15.4 illustrates the boxplots of the age and stage at diagnosis from years 2000–2014, where the combined data for all 15 years are included at the last positions on the subplots. Figure 15.5 illustrates survival distributions as a function of the age and stage at diagnosis. These are clearly age-dependent, for all stages.

Fig. 15.4
figure 4

The boxplots of the age and stage at diagnosis from years 2000–2014. (a) The boxplot of the age at diagnosis across years 2000–2014. (b) The boxplot of the stage at diagnosis across years 2000–2014. A cursory examination of these marginal distributions indicates minimal variation over the 15-year period. Accordingly, the models in this paper were developed using the aggregated data, which appears as “all”

Fig. 15.5
figure 5figure 5

Nonstationarity in post-diagnosis survival

Appendix 2: Validity Conditions

$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,2U} &\geq P_{1D,2D} \quad && {} \end{array}\end{aligned} $$
(15.9)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,3U} &\geq P_{1D,3D} \quad && {} \end{array}\end{aligned} $$
(15.10)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,DD} &\geq P_{1D,DD} \quad && {} \end{array}\end{aligned} $$
(15.11)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,3U} &\geq P_{2D,3D} \quad && {} \end{array}\end{aligned} $$
(15.12)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,DD} &\geq P_{2D,DD} \quad && {} \end{array}\end{aligned} $$
(15.13)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3U,DD} &\geq P_{3D,DD} \quad && {} \end{array}\end{aligned} $$
(15.14)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,3U} &\geq P_{1U,2U} \quad && {} \end{array}\end{aligned} $$
(15.15)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3U,DD} &\geq P_{2U,3U} \quad && {} \end{array}\end{aligned} $$
(15.16)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2D,3D} &\geq P_{1D,2D} \quad && {} \end{array}\end{aligned} $$
(15.17)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3D,DD} &\geq P_{2D,3D} \quad && {} \end{array}\end{aligned} $$
(15.18)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,2U} &\geq P_{1U,3U} \quad && {} \end{array}\end{aligned} $$
(15.19)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,3U} &\geq P_{1U,DD} \quad && {} \end{array}\end{aligned} $$
(15.20)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1D,2D} &\geq P_{1D,3D} \quad && {} \end{array}\end{aligned} $$
(15.21)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1D,3D} &\geq P_{1D,DD} \quad && {} \end{array}\end{aligned} $$
(15.22)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,3U} &\geq P_{2U,DD} \quad && {} \end{array}\end{aligned} $$
(15.23)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2D,3D} &\geq P_{2D,DD} \quad && {} \end{array}\end{aligned} $$
(15.24)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,1D} &\geq P_{1U,2D} \quad && {} \end{array}\end{aligned} $$
(15.25)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,2D} &\geq P_{1U,3D} \quad && {} \end{array}\end{aligned} $$
(15.26)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{1U,3D} &\geq P_{1U,DD} \quad && {} \end{array}\end{aligned} $$
(15.27)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,2D} &\geq P_{2U,3D} \quad && {} \end{array}\end{aligned} $$
(15.28)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,3D} &\geq P_{2U,DD} \quad && {} \end{array}\end{aligned} $$
(15.29)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,DD} &\geq P_{1U,DD} \quad && {} \end{array}\end{aligned} $$
(15.30)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3U,DD} &\geq P_{2U,DD} \quad && {} \end{array}\end{aligned} $$
(15.31)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2D,DD} &\geq P_{1D,DD} \quad && {} \end{array}\end{aligned} $$
(15.32)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3D,DD} &\geq P_{2D,DD} \quad && {} \end{array}\end{aligned} $$
(15.33)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,3D} &\geq P_{1U,3D} \quad && {} \end{array}\end{aligned} $$
(15.34)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3U,3D} &\geq P_{2U,3D} \quad && {} \end{array}\end{aligned} $$
(15.35)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,2D} &\geq P_{1U,2D} \quad && {} \end{array}\end{aligned} $$
(15.36)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3U,3D} &\geq P_{3U,DD} \quad && {} \end{array}\end{aligned} $$
(15.37)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{2U,2D} &\geq P_{1U,1D} \quad && {} \end{array}\end{aligned} $$
(15.38)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} P_{3U,3D} &\geq P_{2U,2D} \quad && {} \end{array}\end{aligned} $$
(15.39)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} p_{DO}(a) &= \hat{p}_{DO}(a) \quad && \forall a \in \mathcal{A} {} \end{array}\end{aligned} $$
(15.40)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} \sum_{j \in \mathcal{S}} P_{i,j}(a) &= 1 \quad && \forall i \in \mathcal{S}, a \in \mathcal{A} {} \end{array}\end{aligned} $$
(15.41)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} 0 \leq P_{i,j}(a) &\leq 1 \quad && \forall i,j \in \mathcal{S}, a \in \mathcal{A} {} \end{array}\end{aligned} $$
(15.42)
$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} 0 \leq \beta &\leq \dfrac{1-p_{DO}(85)}{45} \quad && {} \end{array}\end{aligned} $$
(15.43)

Equations (15.9)–(15.14) state that treatment helps slow down progression. Equations (15.15)–(15.18) impose that progression is more likely when the person is in a more severe health state. Equations (15.19)–(15.39) require that progressing to a more severe health state is less likely than to a less severe health state. Equation (15.40) sets p DO(a) as the corresponding observed value. Equations (15.41)–(15.42) refer to the basic probability laws, whereas (15.43) ensures that the slope defining the disease activation process is strictly positive and is at most \(\dfrac {1-p_{DO}(85)}{45}\). This is derived from the fact that \(\hat {p}_{DO}(a)\) is a monotonically decreasing function of a, and that (15.41) must be satisfied.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J.V., Higle, J.L. (2020). Calibration Uncertainty and Model-Based Analyses with Applications to Ovarian Cancer Modeling. In: Smith, A. (eds) Women in Industrial and Systems Engineering. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-11866-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11866-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11865-5

  • Online ISBN: 978-3-030-11866-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics