Skip to main content

Unsupervised Learning and Simulation for Complexity Management in Business Operations

  • Chapter
  • First Online:
Applied Data Science

Abstract

A key resource in data analytics projects is the data to be analyzed. What can be done in the middle of a project if this data is not available as planned? This chapter explores a potential solution based on a use case from the manufacturing industry where the drivers of production complexity (and thus costs) were supposed to be determined by analyzing raw data from the shop floor, with the goal of subsequently recommending measures to simplify production processes and reduce complexity costs.

The unavailability of the data—often a major threat to the anticipated outcome of a project—has been alleviated in this case study by means of simulation and unsupervised machine learning: a physical model of the shop floor produced the necessary lower-level records from high-level descriptions of the facility. Then, neural autoencoders learned a measure of complexity regardless of any human-contributed labels.

In contrast to conventional complexity measures based on business analysis done by consultants, our data-driven methodology measures production complexity in a fully automated way while maintaining a high correlation to the human-devised measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbeel, P. (2017). Pieter Abbeel: Deep learning-to-learn robotic control [video-file]. Retrieved from https://youtu.be/TERCdog1ddE

  • Batty, M., Morphet, R., Masucci, P., & Stanilov, K. (2014). Entropy, complexity, and spatial information. Journal of Geographical Systems, 16(4), 363–385.

    Article  Google Scholar 

  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

    Article  Google Scholar 

  • Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning theory. In Advanced lectures on machine learning (pp. 169–207). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Budde, L., Faix, A., & Friedli, T. (2015). From functional to cross-functional management of product portfolio complexity. In Presented at the POMS 26th Annual Conference, Washington, DC.

    Google Scholar 

  • Closs, D. J., Jacobs, M. A., Swink, M., & Webb, G. S. (2008). Toward a theory of competencies for the management of product complexity: Six case studies. Journal of Operations Management, 26(5), 590–610. https://doi.org/10.1016/j.jom.2007.10.003.

    Article  Google Scholar 

  • Feldman, D. P., & Crutchfield, J. P. (1998). Measures of statistical complexity: Why? Physics Letters A, 238(4–5), 244–252.

    Article  MathSciNet  Google Scholar 

  • Fischi, J., Nilchiani, R., & Wade, J. (2015). Dynamic complexity measures for use in complexity-based system design. IEEE Systems Journal, 11(4), 2018–2027. https://doi.org/10.1109/JSYST.2015.2468601.

    Article  Google Scholar 

  • Fisher, M. L., & Ittner, C. D. (1999). The impact of product variety on automobile assembly operations: Empirical evidence and simulation analysis. Management Science, 45(6), 771–786.

    Article  Google Scholar 

  • Fisher, M., Ramdas, K., & Ulrich, K. (1999). Component sharing in the management of product variety: A study of automotive braking systems. Management Science, 45(3), 297–315.

    Article  Google Scholar 

  • Fogliatto, F. S., Da Silveira, G. J., & Borenstein, D. (2012). The mass customization decade: An updated review of the literature. International Journal of Production Economics, 138(1), 14–25.

    Article  Google Scholar 

  • Friedli, T., Basu, P., Bellm, D., & Werani, J. (Eds.). (2013). Leading pharmaceutical operational excellence: Outstanding practices and cases. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-35161-7.

    Book  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press. Retrieved December 22, 2017, from http://www.deeplearningbook.org

  • Henriques, T., Gonçalves, H., Antunes, L., Matias, M., Bernardes, J., & Costa-Santos, C. (2013). Entropy and compression: Two measures of complexity. Journal of Evaluation in Clinical Practice, 19(6), 1101–1106.

    Article  Google Scholar 

  • Kawaguchi, K., Kaelbling, L. P., & Bengio, Y. (2017). Generalization in deep learning. CoRR, 1710, 05468. Retrieved December 22, 2017, from https://arxiv.org/abs/1710.05468

  • Kekre, S., & Srinivasan, K. (1990). Broader product line: A necessity to achieve success? Management Science, 36(10), 1216–1232.

    Article  Google Scholar 

  • Krishnan, V., & Gupta, S. (2001). Appropriateness and impact of platform-based product development. Management Science, 47(1), 52–68.

    Article  Google Scholar 

  • Lancaster, K. (1990). The economics of product variety: A survey. Marketing Science, 9(3), 189–206.

    Article  Google Scholar 

  • Lichtensteiger, L. & Pfeifer, R. (2002). An optimal sensor morphology improves adaptability of neural network controllers. In J. R. Dorronsoro (Ed.), Proceedings of the International Conference on Artificial Neural Networks (ICANN 2002), Lecture Notes in Computer Science LNCS 2415 (pp. 850–855).

    Google Scholar 

  • Meierhofer, J. & Meier, K., (2017). From data science to value creation. In St. Za, M. Drăgoicea, & M. Cavallari (Eds.) Exploring Services Science, 8th International Conference, IESS 2017, Rome, Italy, May 24–26, 2017, Proceedings (pp. 173–181). Cham: Springer.

    Google Scholar 

  • Orfi, N., Terpenny, J., & Sahin-Sariisik, A. (2012). Harnessing product complexity: Step 2—measuring and evaluating complexity levels. The Engineering Economist, 57(3), 178–191. https://doi.org/10.1080/0013791X.2012.702197.

    Article  Google Scholar 

  • Park, K., & Kremer, G. E. O. (2015). Assessment of static complexity in design and manufacturing of a product family and its impact on manufacturing performance. International Journal of Production Economics, 169, 215–232.

    Article  Google Scholar 

  • Pimentel, D., Nowak, R., & Balzano, L. (2014, June). On the sample complexity of subspace clustering with missing data. In 2014 IEEE Workshop on Statistical Signal Processing (SSP) (pp. 280–283). IEEE.

    Google Scholar 

  • Pinedo, M. L. (2009). Planning and scheduling in manufacturing and services (2nd ed.). Dordrecht: Springer.

    Book  Google Scholar 

  • Ramdas, K., & Sawhney, M. S. (2001, January 1). A cross-functional approach to evaluating multiple line extensions for assembled products [research-article]. Retrieved January 15, 2014, from http://pubsonline.informs.org/doi/abs/10.1287/mnsc.47.1.22.10667

  • Schmidhuber, J. (2008). Driven by compression progress: A simple principle explains essential aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. In Workshop on anticipatory behavior in adaptive learning systems (pp. 48–76). Heidelberg: Springer.

    Google Scholar 

  • Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.

    Article  MathSciNet  Google Scholar 

  • Stadelmann, T., Tolkachev, V., Sick, B., Stampfli, J., & Dürr, O. (2018). Beyond ImageNet - deep learning in industrial practice. In M. Braschler, T. Stadelmann, & K. Stockinger (Eds.), Applied data science: Lessons learned for the data-driven business. Heidelberg: Springer.

    Google Scholar 

  • Swiss Alliance for Data-Intensive Services. (2017). Digitization & innovation through cooperation. Glimpses from the digitization & innovation workshop at “Konferenz Digitale Schweiz”. Retrieved April 26, 2018, from https://data-service-alliance.ch/blog/blog/digitization-innovation-through-cooperation-glimpses-from-the-digitization-innovation-workshop

  • Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488. https://doi.org/10.1016/j.ijpe.2005.12.006.

    Article  Google Scholar 

  • Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation (2nd ed.). Orlando, FL: Academic Press.

    MATH  Google Scholar 

  • Zhu, X., Gibson, B. R., & Rogers, T. T. (2009). Human rademacher complexity. In Advances in neural information processing systems (pp. 2322–2330). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support by CTI grant 18993.1 PFES-ES, and for the participation of our colleagues from the ZHAW Datalab in the conducted survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Hollenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hollenstein, L. et al. (2019). Unsupervised Learning and Simulation for Complexity Management in Business Operations. In: Braschler, M., Stadelmann, T., Stockinger, K. (eds) Applied Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-11821-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11821-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11820-4

  • Online ISBN: 978-3-030-11821-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics