Skip to main content

Obesity and Diabetes

  • Chapter
  • First Online:
  • 3889 Accesses

Abstract

The prevalence of obesity has been increasing globally. Due to the negative health effects, obesity has been recognized as a major public health concern. Obesity is defined as a body mass index (BMI) of greater than or equal to 30 kg/m2. The location (i.e., abdominal) and type of excess weight contribute to ill-health; thus methods such as waist circumference and body fat measurements are used in the assessment of obesity. In relation to obesity and type 2 diabetes (T2D), genetics, physical activity, and diet are key predictors to the development of these chronic conditions. Fortunately, treatment options for obesity and T2D are similar and can be categorized as lifestyle, pharmacological, or surgical. When medications or surgery is added to lifestyle interventions, there is much greater benefit in terms of weight loss and diabetes control over lifestyle interventions on their own.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. The World Health Organization. Overweight and obesity [Internet]. 2015 [cited 2017 Oct 8]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/.

  2. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–25.

    Article  PubMed  Google Scholar 

  3. Wilson PWF, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867–72.

    Article  PubMed  Google Scholar 

  4. Christensen RAG, Raiber L, Macpherson AK, Kuk JL. The association between obesity and self-reported sinus infection in non-smoking adults: a cross-sectional study. Clin Obes. 2016;6(6):389–94.

    Article  CAS  PubMed  Google Scholar 

  5. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003;289(2):187–93.

    Article  PubMed  Google Scholar 

  6. Chang SH, Pollack LM, Colditz GA. Life years lost associated with obesity-related diseases for US non-smoking adults. PLoS One. 2013;8(6):e66550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai AG, Williamson DF, Glick HA. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes Rev. 2011;12(1):50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim DD, Basu A. Estimating the medical care costs of obesity in the United States: systematic review, meta-analysis, and empirical analysis. Value Health. 2016;19(5):602–13.

    Article  PubMed  Google Scholar 

  9. Peitz GW, Troyer J, Jones AE, Shapiro NI, Nelson RD, Hernandez J, et al. Association of body mass index with increased cost of care and length of stay for emergency department patients with chest pain and dyspnea. Circ Cardiovasc Qual Outcomes. 2014;7(2):292–8.

    Article  PubMed  Google Scholar 

  10. Cawley J, Rizzo JA, Haas K. Occupation-specific absenteeism costs associated with obesity and morbid obesity. J Occup Environ Med. 2007;49(12):1317–24.

    Article  PubMed  Google Scholar 

  11. Conway B, Miller RG, Costacou T, Fried L, Kelsey S, Evans RW, et al. Temporal patterns in overweight and obesity in type 1 diabetes. Diabet Med. 2010;27(4):398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clement M, Harvey B, Rabi DM, Roscoe RS, Sherifali D. Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes [Internet]. 2013;37(Suppl 1):S20–5. https://doi.org/10.1016/j.jcjd.2013.01.014.

    Article  Google Scholar 

  13. Goebel-Fabbri AE. Disturbed eating behaviors and eating disorders in type 1 diabetes: clinical significance and treatment recommendations. Curr Diab Rep. 2009;9(2):133–9.

    Article  PubMed  Google Scholar 

  14. World Health Organization Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63.

    Article  Google Scholar 

  15. Dixon JB, Zimmet P, Alberti KG, Rubino F. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28(6):628–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGMM, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.

    Article  CAS  PubMed  Google Scholar 

  17. Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22(12):1164–71.

    Article  CAS  PubMed  Google Scholar 

  18. Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes Relat Metab Disord. 2001;25(5):652–61.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang C, Rexrode KM, Van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658–67.

    Article  PubMed  Google Scholar 

  20. Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81(3):555–63.

    Article  CAS  PubMed  Google Scholar 

  21. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2017;162(18):2074–9.

    Article  Google Scholar 

  22. National Institutes of Health. The practical guide. Identification, evaluation, and treatment of overweight and obesity in adults. NIH Publ Number 00-4084. 2000:26–7. https://www.nhlbi.nih.gov/files/docs/guidelines/prctgd_c.pdf

  23. Carroll JF, Chiapa AL, Rodriquez M, Phelps DR, Cardarelli KM, Vishwanatha JK, et al. Visceral fat, waist circumference, and BMI: impact of race/ethnicity. Obesity (Silver Spring). 2008;16(3):600–7.

    Article  Google Scholar 

  24. Bodicoat DH, Gray LJ, Henson J, Webb D, Guru A, Misra A, et al. Body mass index and waist circumference cut-points in multi-ethnic populations from the UK and India : the ADDITION-Leicester, Jaipur heart watch and New Delhi cross-sectional studies. PLoS One. 2014;9(3):1–6.

    Article  CAS  Google Scholar 

  25. Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311(6998):158–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ardern CI, Janssen I, Ross R, Katzmarzyk PT. Development of health-related waist circumference thresholds within BMI categories. Obes Res. 2004;12(7):1094–103.

    Article  PubMed  Google Scholar 

  27. World Health Organization. Waist circumference and waist-hip ratio: report of a WHO expert consultation. World Heal Organ. 2008;(December):8–11. https://www.who.int/nutrition/publications/obesity/WHO_report_waistcircumference_and_waisthip_ratio/en/

  28. Molarius A, Seidell J. Selection of anthropometric indicators for classification of abdominal fatness--a critical review. Int J Obes Relat Metab Disord. 1998;22(8):719–27.

    Article  CAS  PubMed  Google Scholar 

  29. Caan B, Armstrong MA, Selby JV, Sadler M, Folsom AR, Jacobs D, et al. Changes in measurements of body fat distribution accompanying weight change. Int J Obes Relat Metab Disord. 1994;18(6):397–404.

    CAS  PubMed  Google Scholar 

  30. Taksali SE, Caprio S, Dziura J, Dufour S, Calı AMG, Goodman TR, et al. High visceral and low abdominal subcutaneous fat. Diabetes. 2008;57(2):367–71.

    Article  CAS  PubMed  Google Scholar 

  31. Wing RR, Jeffery RW, Burton LR, Thorson C, Kuller LH, Folsom AR. Change in waist-hip ratio with weight loss and its association with change in cardiovascular risk factors. Am J Clin Nutr. 1992;55(6):1086–92.

    Article  CAS  PubMed  Google Scholar 

  32. Matsuzawa Y, Shimomurn I, Nakumura T, Keno Y, Kotani K. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res. 1995;3(Suppl 2):187S–94S.

    Article  PubMed  Google Scholar 

  33. Deurenberg-Yap M, Chew SK, Deurenberg P. Elevated body fat percentage and cardiovascular risks at low body mass index levels among Singaporean Chinese, Malays and Indians. Obes Rev. 2002;3(3):209–15.

    Article  CAS  PubMed  Google Scholar 

  34. Deurenberg P. Universal cut-off BMI points for obesity are not appropriate. Br J Nutr. 2001;85(2):135–6.

    Article  CAS  PubMed  Google Scholar 

  35. World Health Organization (WHO). Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser [Internet]. 2000;894:i–xii, 1–253. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11234459.

  36. Sloan A, Burt J, Blyth C. Estimation of body fat in young women. J Appl Physiol. 1962;17:967–70.

    Article  Google Scholar 

  37. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97.

    Article  CAS  PubMed  Google Scholar 

  38. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709–23.

    CAS  PubMed  Google Scholar 

  39. Jackson AS, Pollock ML, Ward A. Generalized equations for perdicting body density of women. Med Sci Sports Exerc. 1980;12(3):175–82.

    Article  CAS  PubMed  Google Scholar 

  40. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497–504.

    Article  CAS  PubMed  Google Scholar 

  41. Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21(3):681–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr. 1992;11(2):199–209.

    CAS  PubMed  Google Scholar 

  43. Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys 1–4. Am J Clin Nutr. 2003;77(22):331–40.

    Article  CAS  PubMed  Google Scholar 

  44. Roubenoff R, Kehayias JJ, Dawson Hughes B, Heymsfield SB. Use of dual-energy x-ray absorptiometry in body composition studies: not yet a gold standard. Am J Clin Nutr. 1993;58(5):589–91.

    Article  CAS  PubMed  Google Scholar 

  45. Bosy-Westphal A, Later W, Hitze B, Sato T, Kossel E, Glüer CC, et al. Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes Facts. 2008;1(6):319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wattanapenpaiboon N, Lukito W, Strauss BJ, Hsu-Hage BH, Wahlqvist ML, Stroud DB. Agreement of skinfold measurement and bioelectrical impedance analysis (BIA) methods with dual energy X-ray absorptiometry (DEXA) in estimating total body fat in Anglo-Celtic Australians. Int J Obes Relat Metab Disord. 1998;22(9):854–60.

    Article  CAS  PubMed  Google Scholar 

  47. Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Monica C. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring). 2009;17(6):1281–6.

    Google Scholar 

  48. Chouinard LE, Schoeller DA, Watras AC, Clark RR, Close RN, Buchholz AC. Bioelectrical impedance vs. four-compartment model to assess body fat change in overweight adults. Obesity (Silver Spring). 2007;15(1):85–92.

    Article  Google Scholar 

  49. Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J, et al. Foresight tackling obesities: future choices – project report. Gov Off Sci. 2007:1–161. https://wiki.cancer.org.au/policy/Citation:Butland_B,_Jebb_S,_Kopelman_P,_McPherson_K,_Thomas_S,_Mardell_J,_et_al_2007.

  51. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: the 2005 update. Obesity. 2006;14(4):529–644.

    Article  PubMed  Google Scholar 

  52. Mergen M, Mergen H, Ozata M, Oner R, Oner C. A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab. 2001;86(7):3448–51.

    Article  CAS  PubMed  Google Scholar 

  53. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14(1):10–26.

    Article  CAS  PubMed  Google Scholar 

  54. Farooqi IS, O’Rahilly S. New advances in the genetics of early onset obesity. Int J Obes. 2005;29(10):1149–52.

    Article  CAS  Google Scholar 

  55. Farooqi IS, O’Rahilly S. Genetic factors in human obesity. Obes Rev. 2007;8(Suppl 1):37–40.

    Article  PubMed  Google Scholar 

  56. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504):1–7.

    Article  Google Scholar 

  57. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE. The body-mass index of twins who have been reared apart. N Engl J Med. 1990;322(21):1483–7.

    Article  CAS  PubMed  Google Scholar 

  58. Price RA, Gottesman II. Body fat in identical twins reared apart: roles for genes and environment. Behav Genet. 1991;21(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  59. Silventoinen K, Sans S, Tolonen H, Monterde D, Kuulasmaa K, Kesteloot H, et al. Trends in obesity and energy supply in the WHO MONICA project. Int J Obes Relat Metab Disord. 2004;28(5):710–8.

    Article  CAS  PubMed  Google Scholar 

  60. Brown RE, Sharma AM, Ardern CI, Mirdamadi P, Mirdamadi P, Kuk JL. Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity. Obes Res Clin Pract. 2015;10(September):1–13.

    CAS  Google Scholar 

  61. Heitmann BL, Lissner L, Sorensen TIA, Bengtsson C. Dietary fat intake and weight gain in women genetically predisposed for obesity. Am J Clin Nutr. 1995;61(6):1213–7.

    Article  CAS  PubMed  Google Scholar 

  62. World Health Organization. Guideline: sugars intake for adults and children. World Heal Organ -WHO. 2014;48:4.

    Google Scholar 

  63. Jeffery RW, Wing RR, Sherwood NE, Tate DF. Physical activity and weight loss: does prescribing higher physical activity goals improve outcome? Am J Clin Nutr. 2003;78(4):684–9.

    Article  CAS  PubMed  Google Scholar 

  64. Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr. 2001;21:323–41.

    Article  CAS  PubMed  Google Scholar 

  65. Tudor-Locke C, Brashear MM, Johnson WD, Katzmarzyk PT. Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women. Int J Behav Nutr Phys Act. 2010;7:60.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wyatt ID, Hecker DE. Occupational changes during the 20th century. Mon Labor Rev. 2006;129(3):35–57.

    Google Scholar 

  67. Frank LD, Sallis JF, Conway TL, Chapman JE, Saelens BE, Bachman W. Many pathways from land use to health: associations between neighborhood walkability and active transportation, body mass index, and air quality. J Am Plan Assoc. 2006;72(1):75–87.

    Article  Google Scholar 

  68. Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013;4(4):114.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Astrup A, Finer N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obes Rev. 2000;1(2):57–9.

    Article  CAS  PubMed  Google Scholar 

  70. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. Obstet Gynecol Surv. 2012;67(3):156–8.

    Article  Google Scholar 

  71. Ferrannini E, Camastra S. Relationship between impaired glucose tolerance, non-insulin-dependent diabetes mellitus and obesity. Eur J Clin Invest. 1998;28(Suppl 2):3–6.

    Article  PubMed  Google Scholar 

  72. Mozaffarian D, Wilson PWF, Kannel WB. Beyond established and novel risk factors lifestyle risk factors for cardiovascular disease. Circulation. 2008;117(23):3031–8.

    Article  PubMed  Google Scholar 

  73. Al-Quwaidhi A, Critchley J, O’Flaherty M, Pearce M. Obesity and type 2 diabetes mellitus: a complex association. Saudi J Obes. 2013;1(2):49.

    Article  Google Scholar 

  74. Murray CJL, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608.

    Article  CAS  PubMed  Google Scholar 

  75. Mozaffarian D. Foods, obesity, and diabetes-are all calories created equal? Nutr Rev. 2017;75:19–31.

    Article  PubMed  Google Scholar 

  76. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2224–60.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307(5708):373–5.

    Article  CAS  PubMed  Google Scholar 

  78. Ahima RS. Revisiting leptin’s role in obesity and weight loss. J Clin Invest [Internet]. 2008;118(7):2380–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18568083%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2430504.

    CAS  Google Scholar 

  79. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vittal BG, Praveen G, Deepak P. A study of body mass index in healthy individuals and its relationship with fasting blood sugar. J Clin Diagnostic Res [Internet]. 2010 [cited 2017 Sep 7];4(6):3421–4. Available from: http://www.jcdr.net/article_fulltext.asp?id=990.

  81. Innocent O, ThankGod OO, Sandra EO, Josiah IE. Correlation between body mass index and blood glucose levels among some Nigerian undergraduates. HOAJ Biol. 2013;2(1):4.

    Article  Google Scholar 

  82. Magkos F, Nikonova E, Fain R, Zhou S, Ma T, Shanahan W. Effect of lorcaserin on glycemic parameters in patients with type 2 diabetes mellitus. Obesity. 2017;25(5):842–9.

    Article  CAS  PubMed  Google Scholar 

  83. Mottalib A, Sakr M, Shehabeldin M, Hamdy O. Diabetes remission after nonsurgical intensive lifestyle intervention in obese patients with type 2 diabetes. J Diabetes Res. 2015;2015(2015):4.

    Google Scholar 

  84. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e5.

    Article  PubMed  Google Scholar 

  85. Garvey WT, Ryan DH, Bohannon NJV, Kushner RF, Rueger M, Dvorak RV, et al. Weight-loss therapy in type 2 diabetes: effects of phentermine and topiramate extended release. Diabetes Care. 2014;37(12):3309–16.

    Article  CAS  PubMed  Google Scholar 

  86. Hollander P, Gupta AK, Plodkowski R, Greenway F, Bays H, Burns C, et al. Effects of naltrexone sustained- release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dakour Aridi HN, Wehbe M-R, Shamseddine G, Alami RS, Safadi BY. Long-term outcomes of roux-en-Y gastric bypass conversion of failed laparoscopic gastric band. Obes Surg. 2017;27(6):1401–8.

    Article  PubMed  Google Scholar 

  88. Curioni CC, Lourenço PM. Long-term weight loss after diet and exercise: a systematic review. Int J Obes. 2005;29(10):1168–74.

    Article  CAS  Google Scholar 

  89. Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of directcom parisons. J Acad Nutr Diet. 2014;114(10):1557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes. 1997;21(10):941–7.

    Article  CAS  Google Scholar 

  91. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  92. Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS). Diabetes Care. 2003;26(12):3230–6.

    Article  PubMed  Google Scholar 

  93. Look AHEAD Research Group LAR, Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.

    Article  Google Scholar 

  94. Look AHEAD Research Group, Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170(17):1566–75.

    Google Scholar 

  95. Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr, Brehm BJ, et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med. 2006;166(3):285–93.

    Article  CAS  PubMed  Google Scholar 

  96. Tobias DK, Chen M, Manson JAE, Ludwig DS, Willett W, Hu FB. Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(12):968–79.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS, et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176:S44–54.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Davidson LE, Hudson R, Kilpatrick K, Kuk JL, McMillan K, Janiszewski PM, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch Intern Med. American Medical Association. 2009;169(2):122–31.

    Article  PubMed  Google Scholar 

  99. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33:2692.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Arciero PJ, Gentile CL, Martin-Pressman R, Ormsbee MJ, Everett M, Zwicky L, et al. Increased dietary protein and combined high intensity aerobic and resistance exercise improves body fat distribution and cardiovascular risk factors. Int J Sport Nutr Exerc Metab. 2006;16(4):373–92.

    Article  CAS  PubMed  Google Scholar 

  101. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

    Article  PubMed  Google Scholar 

  102. Brownell KD, Jeffery RW. Improving long-term weight loss: pushing the limits of treatment. Behav Ther. 1987;18(4):353–74.

    Article  Google Scholar 

  103. Jeffery RW, Drewnowski A, Epstein LH, Stunkard AJ, Wilson GT, Wing RR, et al. Long-term maintenance of weight loss: current status. Health Psychol. 2000;19(1S):5–16.

    Article  CAS  PubMed  Google Scholar 

  104. Jacob AN, Salinas K, Adams-Huet B, Raskin P. Weight gain in type 2 diabetes mellitus. Diabetes Obes Metab. 2007;9(3):386–93.

    Article  CAS  PubMed  Google Scholar 

  105. Kroeger CM, Hoddy KK, Varady KA. Impact of weight regain on metabolic disease risk: a review of human trials. J Obes. 2014;2014(2014):8.

    Google Scholar 

  106. Beavers KM, Case LD, Blackwell CS, Katula JA, Goff DC, Vitolins MZ, et al. Effects of weight regain following intentional weight loss on glucoregulatory function in overweight and obese adults with pre-diabetes. Obes Res Clin Pract. 2015;9(3):266–73.

    Article  PubMed  Google Scholar 

  107. Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342–62.

    Article  CAS  PubMed  Google Scholar 

  108. Padwal R, Li SK, Lau DCW. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes Relat Metab Disord. 2003;27:1437–46.

    Article  CAS  PubMed  Google Scholar 

  109. Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean MEJ, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes. 2012;36(6):843–54.

    Article  CAS  Google Scholar 

  110. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. Massachusetts Medical Society. 2015;373(1):11–22.

    Article  PubMed  CAS  Google Scholar 

  111. Rucker D, Padwal R, Li SK, Curioni C, Lau DCW. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ. 2007;335(7631):1194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vray M, Joubert J-M, Eschwège E, Liard F, Fagnani F, Montestruc F, et al. Results from the observational study EPIGRAM: management of excess weight in general practice and follow-up of patients treated with orlistat. Therapie. 2005;60(1):17–24.

    Article  PubMed  Google Scholar 

  113. Hollander PA, Elbein SC, Hirsch IB, Kelley D, McGill J, Taylor T, et al. Role of orlistat in the treatment of obese patients with type 2 diabetes: a 1-year randomized double-blind study. Diabetes Care. 1998;21(8):1288–94.

    Article  CAS  PubMed  Google Scholar 

  114. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314(7):687–99.

    Article  CAS  PubMed  Google Scholar 

  115. Hermansen K, Mortensen LS. Bodyweight changes associated with antihyperglycemic agents in type 2 diabetes mellitus. Drug Saf. 2007;30(12):1127–42.

    Article  CAS  PubMed  Google Scholar 

  116. Van Gaal L, Scheen A. Weight management in type 2 diabetes : current and emerging approaches to treatment. Diabetes Care. 2015;38(6):1161–72.

    Article  PubMed  Google Scholar 

  117. American Society for Metabolic and Bariatric Surgery. Story of obesity surgery [Internet]. 2004 [cited 2017 Mar 27]. Available from: https://asmbs.org/resources/story-of-obesity-surgery.

  118. Garb J, Welch G, Zagarins S, Kuhn J, Romanelli J. Bariatric surgery for the treatment of morbid obesity: a meta-analysis of weight loss outcomes for laparoscopic adjustable gastric banding and laparoscopic gastric bypass. Obes Surg. 2009;19(10):1447–55.

    Article  PubMed  Google Scholar 

  119. Hutter MM, Schirmer BD, Jones DB, Ko CY, Cohen ME, Merkow RP, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254(3):410–22.

    Article  PubMed  Google Scholar 

  120. Angrisani L, Santonicola A, Iovino P, Vitiello A, Zundel N, Buchwald H, et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017;27(9):2279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Buchwald H, Williams SE. Bariatric surgery worldwide 2003. Obes Surg. 2004;14(9):1157–64.

    Article  PubMed  Google Scholar 

  122. Flint RS, Coulter G, Roberts R. The pattern of adjustments after laparoscopic adjustable gastric band. Obes Surg. 2015;25(11):2061–5.

    Article  PubMed  Google Scholar 

  123. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Proies W, Fahrbach KSK. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–7.

    Article  CAS  PubMed  Google Scholar 

  124. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after roux-en-Y gastric bypass and sleeve gastrectomy. Ann Surg. 2008;247(3):401–7.

    Article  PubMed  Google Scholar 

  125. MacDonald KG, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, et al. The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg. 1996;1(3):213–20.

    Article  Google Scholar 

  126. Flum DR, Dellinger EP. Impact of gastric bypass operation on survival: a population-based analysis. J Am Coll Surg. 2004;199(4):543–51.

    Article  PubMed  Google Scholar 

  127. Christou NV, Sampalis JS, Liberman M, Look D, Auger S, McLean APH, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004;240(3):416–24.

    Article  PubMed  PubMed Central  Google Scholar 

  128. DeMaria EJ, Sugerman HJ, Meador JG, Doty JM, Kellum JM, Wolfe L, et al. High failure rate after laparoscopic adjustable silicone gastric banding for treatment of morbid obesity. Ann Surg. 2001;233(6):809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Suggested/Further Reading

  • Astrup A, Finer N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obes Rev. 2000;1(2):57–9. Explores the relationship between obesity and T2D.

    Article  CAS  PubMed  Google Scholar 

  • Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J, et al. Foresight tackling obesities: future choices – project report. Gov Off Sci. 2007;1–161. Section 5 includes an in-depth discussion of the development and treatment of obesity according to the spaghetti map.

    Google Scholar 

  • Sharma AM, Kushner RF. A proposed clinical staging system for obesity. Int J Obes. 2009;33(3):289–95. Seminal text on the Edmonton Obesity Staging System (EOSS) to evaluate the morbidity and mortality associated with excess weight.

    Article  CAS  Google Scholar 

  • Wharton S, Serodio KJ. Next generation of weight management medications: implications for diabetes and CVD risk. Curr Cardiol Rep. 2015;17(5):35. Discusses the mechanism of action for weight management medications, and their use in the context of diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wharton S, Sharma A, Lau D. Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada: weight management in diabetes. Can J Diabetes. 2013;37(Suppl 1):S61–8. Provides a more in-depth discussion of weight management options for patients with diabetes, including graphical representations of common bariatric procedures.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Bariatric surgery

is a type of surgical procedure that decreases the amount of calories a patient can consume and/or digests to result in significant weight loss. Types of bariatric surgery include Roux-en-Y gastric bypass, sleeve gastrectomy, and gastric banding.

Body fat

is the amount of subcutaneous and visceral fat in a person’s body which can be presented as an absolute value or percentage.

Body mass index

is the most common tool to assess obesity. It is calculated by dividing weight in kilograms by height in meters squared.

Metabolic surgery

is a newer term used to refer to bariatric surgery owing to the drastic improvements in metabolic conditions that have been observed post-surgery.

Malabsorptive bariatric surgery

is a bariatric surgery procedure that alters a patient’s digestive tract to decrease the amount of nutrients they can absorb from calories consumed. Examples of types of bariatric surgery that use this technique include the Roux-en-Y gastric bypass and biliopancreatic diversion with the duodenal switch.

Obesity

is excess body weight associated with ill-health. Multiple objective methods exist to classify obesity, with a BMI greater than or equal to 30 kg/m2 the most common.

Restrictive bariatric surgery

is a bariatric surgery procedure that decreases the amount of calories a patient can consume by decreasing the size of the stomach. Examples of types of bariatric surgery that use this technique include the sleeve gastrectomy and gastric banding.

Subcutaneous fat

is the type of body fat located just beneath the skin and can be felt by pinching the skin.

Visceral fat

is the type of body fat located internally around the organs. As such, visceral fat is also called organ fat.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wharton, S., Costanian, C., Gershon, T., Christensen, R.A.G. (2019). Obesity and Diabetes. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-030-11815-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11815-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11814-3

  • Online ISBN: 978-3-030-11815-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics