Skip to main content

Sodium-Glucose Cotransporter 2 Inhibitors

  • Chapter
  • First Online:
Book cover The Diabetes Textbook

Abstract

Sodium-glucose cotransporter 2 inhibitors are the latest medications to be approved and released for treatment of patients with type 2 diabetes. These include canagliflozin, dapagliflozin, and empagliflozin. Their mechanism of action is characterized by permissive glucosuria which has significant effects on lowering hemoglobin A1c by up to 1%. These drugs are also beneficial for blood pressure control mainly due to its diuretic-like effects as well as weight loss secondary to caloric loss via glucosuria. Most impressive to these medications are the marked potential benefits observed in cardiovascular and renal outcomes noted with empagliflozin but yet to be assessed with canagliflozin and dapagliflozin. Use of these medications has introduced to the scientific and medical world the concept of ketones as a superfuel as well. Sodium-glucose cotransporter 2 inhibitors are promising drugs to the diabetic community, and use of these is expected to rise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mudaliar S, Polidori D, Zambrowicz B, Henry R. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport. Diabetes Care. 2015;38(12):2344–53. https://doi.org/10.2337/dc15-0642.

    Article  CAS  PubMed  Google Scholar 

  2. Argento NB, Nakamura K. Glycemic effects of SGLT-2 inhibitor canagliflozin in type 1 diabetic patients using the DexCom G4 platinum CGM. Endocr Pract. 2016;22(3):315–22. https://doi.org/10.4158/EP151016.OR.

    Article  PubMed  Google Scholar 

  3. Plodkowski RA, McGarvey ME, Huribal HM, Reisinger-Kindle K, Kramer B, Solomon M, et al. SGLT-2 inhibitors for the treatment of type 2 diabetes mellitus. Fed Pract. 2015;32(Suppl 11):10S–7S.

    Google Scholar 

  4. Polidori D, Sha S, Mudaliar S, Ciaraldi TP, Ghosh A, Vaccaro N, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36(8):2154–61. https://doi.org/10.2337/dc12-2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lavalle-González FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582–92. https://doi.org/10.1007/s00125-013-3039-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leiter LA, Yoon KH, Arias P, Langslet G, Xie J, Balis DA, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015;38(3):355–64. https://doi.org/10.2337/dc13-2762.

    Article  CAS  PubMed  Google Scholar 

  7. Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Ways K, CANVAS Trial Collaborative Group, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015;38(3):403–11. https://doi.org/10.2337/dc14-1237.

    Article  CAS  PubMed  Google Scholar 

  8. Yale JF, Bakris G, Cariou B, Nieto J, David-Neto E, Yue D, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab. 2014;16(10):1016–27. https://doi.org/10.1111/dom.12348.

    Article  CAS  PubMed  Google Scholar 

  9. List JF, Woo V, Morales E, Tang W, Fierdorek F. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32(4):650–7. https://doi.org/10.2337/dc08-1863.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenstock J, Hansen L, Zee P, Li Y, Cook W, Hirshberg B, et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapagliflozin to metformin. Diabetes Care. 2015;38(3):376–83. https://doi.org/10.2337/dc14-1142.

    Article  CAS  PubMed  Google Scholar 

  11. Nauck MA, Del Prato S, Meier JJ, Durán-García S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin. Diabetes Care. 2011;34(9):2015–22. https://doi.org/10.2337/dc11-0606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(9):691–700. https://doi.org/10.1016/S2213-8587(14)70120-2.

    Article  CAS  PubMed  Google Scholar 

  13. Søfteland E, Meier JJ, Vangen B, Toorawa R, Maldonado-Lutomirsky M, Broedl UC. Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care. 2017;40(2):201–9. https://doi.org/10.2337/dc16-1347.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrannini E, Berk A, Hantel S, Pinnetti S, Hach T, Woerle HJ, et al. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care. 2013;36(12):4015–21. https://doi.org/10.2337/dc13-0663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kovacs CS, Seshiah V, Merker L, Christiansen AV, Roux F, Salsali A, et al. Empagliflozin as add-on therapy to pioglitazone with or without metformin in patients with type 2 diabetes mellitus. Clin Ther. 2015;37(8):1773–88.e1. https://doi.org/10.1016/j.clinthera.2015.05.511.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17(10):936–48. https://doi.org/10.1111/dom.12503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37(7):1815–23. https://doi.org/10.2337/dc13-3055.

    Article  CAS  PubMed  Google Scholar 

  18. De Fronzo R. Effect of combined incretin-based therapy plus canagliflozin on glycemic control and the compensatory rise in hepatic glucose production in type 2 diabetic patients, NCT02324842.

    Google Scholar 

  19. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–94. https://doi.org/10.1111/dom.12670.

    Article  CAS  PubMed  Google Scholar 

  20. Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME Study. Diabetes Care. 2016;39:717–25. https://doi.org/10.2337/dc16-0041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henry R, Thakkar P, Tong C, Polidori D, Alba M. Efficacy and safety of canagliflozin, a sodium–glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care. 2015;38(12):2258–65. https://doi.org/10.2337/dc15-1730.

    Article  CAS  PubMed  Google Scholar 

  22. Zinman B, Wanner C, Lachin J, Fitchett D, et al. Empagliflozin, cardiovascular outcomes and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–27. https://doi.org/10.1056/NEJMoal504720.

    Article  CAS  PubMed  Google Scholar 

  23. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93. https://doi.org/10.1111/dom.12572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sattar N, McLaren J, Fristen SL, Preiss D, McMurray JJ. Sglt2 inhibition and cardiovascular events: why did EMPA-Reg outcomes surprise and what are the likely mechanisms? Diabetologia. 2016;59:1333–9. https://doi.org/10.1007/s00125-016-3956-x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wanner C, Inzucchi S, Lachin J, Fitchett D, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(18):1801–2. https://doi.org/10.1056/NEJMc1611290.

    Article  PubMed  Google Scholar 

  26. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14. https://doi.org/10.2337/dc16-0330.

    Article  PubMed  Google Scholar 

  27. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–22. https://doi.org/10.2337/dc16-0542.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38(9):1638–42. https://doi.org/10.2337/dc15-1380.

    Article  CAS  PubMed  Google Scholar 

  29. Peters A, Baschur EO, Buse J, Cahan P, Diner JC, et al. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium -glucose cotransporter inhibition. Diabetes Care. 2015;38:1687–93. https://doi.org/10.2337/dc15-0843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang H, Li D, Zhang J, Li Y, Wang T, Zhai S. Sodium-glucose transporter-2 inhibitors and risk of adverse renal outcomes in patients with type 2 diabetes: A network meta-analysis of randomized control trials. Diabetes Obes Metab. Published on line Feb 16, 2017. https://doi.org/10.1111/dom.12917.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Dailey III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dailey, G., Clarine, L.H.S., Rodriguez-Martinez, R.M. (2019). Sodium-Glucose Cotransporter 2 Inhibitors. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-030-11815-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11815-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11814-3

  • Online ISBN: 978-3-030-11815-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics