Skip to main content

Photodeactivation Channels of Transition Metal Complexes: A Computational Chemistry Perspective

  • Chapter
  • First Online:
Transition Metals in Coordination Environments

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 29))

Abstract

A detailed molecular-level understanding of the excited-state (ES) decay dynamics of transition metal complexes (TMCs) is vital to develop the next generation of light-active components in a wide variety of applications related to photochemistry, including optoelectronics, photocatalysis, dye-sensitized solar cells, artificial photosynthesis, photonics sensors and switches, and bioimaging. After photoexcitation, TMCs can undergo a plethora of interconnected relaxation processes, which compete to each other and are controlled by the subtle interplay of electronic and geometrical rearrangements that take place during the ES deactivation dynamics at different timescales. Intrinsic factors such as (i) the spin and character of the electronically ES involved in the process and (ii) the energetic alignment and effective couplings between these states do play a protagonist role in determining the preferred deactivation channels. Extrinsic factors, such as temperature, pressure, excitation wavelength, and environmental effects, can often strongly modify the outcome of the photochemical processes. As kinetic control is always at play, only the fastest processes among all possible deactivation channels are generally observed. Due to their high density of ES of various characters, TMCs usually display rich and chameleonic ES and photochemical properties. Computational chemistry is a powerful and unique tool to provide a microscopic and time-resolved description of these complex processes, and it often constitutes the fundamental ingredient for the interpretation of time-resolved absorption and emission spectroscopic measurements. This chapter provides first a general overview on this complex topic, followed by an overview of the state-of-the-art quantum chemical and reaction dynamics methods to study the photodeactivation dynamics of TMCs and finally illustrates the progress and challenges in this field with recent examples from the literature. Importantly, these examples cover the ultrafast ES decay regime but also the long-lived photodeactivation from thermally equilibrated ES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniel C, Gourlaouen C (2017) Chemical bonding alteration upon electronic excitation in transition metal complexes. Coord Chem Rev 344:131–149

    Article  CAS  Google Scholar 

  2. Daniel C (2015) Photochemistry and photophysics of transition metal complexes: quantum chemistry. Coord Chem Rev 282–283:19–32

    Article  CAS  Google Scholar 

  3. González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. Chem Phys Chem 13:28–51

    Article  PubMed  CAS  Google Scholar 

  4. Stufkens DJ, Vlček A (1998) Ligand-dependent excited state behavior of Re(I) and Ru(II) carbonyl-diimine complexes. Coord Chem Rev 177:127–179

    Article  CAS  Google Scholar 

  5. Mai S, Plasser F, Dorn J, Fumanal M, Daniel C, González L (2018) Quantitative wave function analysis for excited states of transition metal complexes. Coord Chem Rev 361:74–97

    Article  CAS  Google Scholar 

  6. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506

    Article  PubMed  CAS  Google Scholar 

  7. Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) What is the “best” atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys 14:5383–5388

    Article  CAS  PubMed  Google Scholar 

  8. Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19

    Article  Google Scholar 

  9. Penfold TJ, Gindensperger E, Daniel C, Marian CM (2018) Spin-vibronic mechanism for intersystem crossing. Chem Rev 118:6975–7025

    Article  CAS  PubMed  Google Scholar 

  10. Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537

    Article  CAS  PubMed  Google Scholar 

  11. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238

    Article  CAS  PubMed  Google Scholar 

  12. Sousa C, Alías M, Domingo A, de Graaf C (2018) Deactivation of excited states in transition metal complexes: insight from computational chemistry. Chem Eur J. https://doi.org/10.1002/chem.201801990

  13. Chergui M (2015) Ultrafast photophysics of transition metal complexes. Acc Chem Res 48:801–808

    Article  CAS  PubMed  Google Scholar 

  14. Chergui M (2012) On the interplay between charge, spin and structural dynamics in transition metal complexes. Dalton Trans 41:13022–13029

    Article  CAS  PubMed  Google Scholar 

  15. Tang KC, Liu KL, Chen IC (2004) Rapid intersystem crossin in highly phosphorescent iridium complexes. Chem Phys Lett 386:437–441

    Article  CAS  Google Scholar 

  16. Cannizzo A, Blanco-Rodríguez AM, El Nahhas A, Szebera J, Zalis S, Vlček A, Chergui M (2008) Femtosecond fluorescence and intersystem crossing in Rhenium(I) carbonyl-bipyridine complexes. J Am Chem Soc 130:8967–8974

    Article  CAS  PubMed  Google Scholar 

  17. Cannizzo A, van Mourik F, Gawelda W, Zgrablic G, Bressler C, Chergui M (2006) Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew Chem Int Ed 45:3174–3176

    Article  CAS  Google Scholar 

  18. Damrauer NH, Cerullo G, Yeh A, Boussie TR, Shank CV, McCusker JK (1997) Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275:54–57

    Article  CAS  PubMed  Google Scholar 

  19. van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Chergui M (2011) Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J Am Chem Soc 133:305–315

    Article  PubMed  CAS  Google Scholar 

  20. Kukura P, McCamant DW, Mathies RA (2007) Femtosecond stimulated raman spectroscopy. Annu Rev Phys Chem 58:461–488

    Article  CAS  PubMed  Google Scholar 

  21. Yoon S, Kukura P, Stuart CM, Mathies RA (2006) Direct observation of the ultrafast intersystem crossing in tris (2, 2-bipyridine) Ruthenium(II) using femtosecond stimulated raman spectroscopy. Mol Phys 104:1275–1282

    Article  CAS  Google Scholar 

  22. Smeigh AL, Creelman M, Mathies RA, McCusker JK (2008) Femtosecond time-resolved optical and raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching. J Am Chem Soc 130:14105–14107

    Article  CAS  PubMed  Google Scholar 

  23. Chergui M, Zewail AH (2009) Electron and X-ray methods of ultrafast structural dynamics: advances and applications. Chem Phys Chem 10:28–43

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Alonso-Mori R, Bergmann U, Bressler C, Chollet M, Galler A, Gawelda W, Hadt RG, Hartsock RW, Kroll T, Kjaer KS, Kubicek K, Lemke HT, Liang HW, Meyer DA, Nielsen MM, Purser C, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Vanko G, Weng TC, Zhu D, Gaffney KJ (2014) Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54:425–463

    Article  CAS  PubMed  Google Scholar 

  26. Carbery WP, Verma A, Turner DB (2017) Spin-orbit coupling drives femtosecond nonadiabatic dynamics in a transition metal compound. J Phys Chem Lett 8:1315–1322

    Article  CAS  PubMed  Google Scholar 

  27. Heitz MC, Finger K, Daniel C (1997) Photochemistry of organometallics: quantum chemistry and photodissociation dynamics. Coord Chem Rev 159:171–193

    Article  CAS  Google Scholar 

  28. Ribbing C, Daniel C (1994) Spin-orbit coupled excited states in transition metal complexes: a configuration interaction treatment of HCo(CO)4. J Chem Phys 100:6591

    Article  CAS  Google Scholar 

  29. Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323

    Article  CAS  PubMed  Google Scholar 

  30. Escudero D, Laurent A, Jacquemin D (2017) Time-dependent density functional theory: a tool to explore excited states. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, Papadopoulos M, Reis HK, Shukla M (eds) Handbook of computational chemistry. Springer, Cham, pp 1–43

    Google Scholar 

  31. Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164

    Article  CAS  Google Scholar 

  32. Yarkony DR (2012) Nonadiabatic quantum chemistry—past, present and future. Chem Rev 112:481–498

    Article  CAS  PubMed  Google Scholar 

  33. Wagenknecht PS, Ford PC (2011) Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. Coord Chem Rev 255:591–616

    Article  CAS  Google Scholar 

  34. Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of tris (2, 2′-bipyridine) Ruthenium(2+) ion. J Am Chem Soc 104:4803–4810

    Article  CAS  Google Scholar 

  35. Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard WA III, Thompson ME (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822

    Article  CAS  PubMed  Google Scholar 

  36. Escudero D (2016) Quantitative prediction of photoluminescence quantum yields of phosphors from first principles. Chem Sci 7:1262–1267

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Jacquemin D, Peng Q, Shuai Z, Escudero D (2018) General approach to compute phosphorescent OLED efficiency. J Phys Chem C 122:6340–6347

    Article  CAS  Google Scholar 

  38. Mai S, Marquetand P, González L (2015) A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int J Quantum Chem 115:1215–1231

    Article  CAS  Google Scholar 

  39. Cui G, Thiel W (2014) Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J Chem Phys 141:124101

    Article  PubMed  CAS  Google Scholar 

  40. Crespo-Otero R, Barbatti M (2018) Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem Rev 118:7026–7068

    Article  CAS  PubMed  Google Scholar 

  41. Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrín DA (2018) Spectroscopy in complex environments from QM–MM Simulations. Chem Rev 118:4071–4113

    Article  CAS  PubMed  Google Scholar 

  42. Mennucci B (2012) Polarizable continuum model. WIREs Comput Mol Sci 2:386–404

    Article  CAS  Google Scholar 

  43. Barboza Formiga AL, Vancoillie S, Pierloot K (2013) Electronic spectra of N-heterocyclic pentacyanoferrate(II) complexes in different solvents, studied by multiconfigurational perturbation theory. Inorg Chem 52:10653–10663

    Article  CAS  Google Scholar 

  44. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J Phys Chem 124:124520

    Article  CAS  Google Scholar 

  45. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Phys Chem 125:054103

    Article  CAS  Google Scholar 

  46. Sisto A, Glowacki DR, Martinez TD (2014) Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc Chem Res 47:2857–2866

    Article  CAS  PubMed  Google Scholar 

  47. Curutchet C, Muñoz-Losa A, Monti S, Kongsted J, Scholes GD, Mennucci B (2009) Electronic energy transfer in condensed phase studied by a polarizable QM/MM model. J Chem Theory Comput 5:1838–1848

    Article  CAS  PubMed  Google Scholar 

  48. Jacob CR, Neugebauer J (2014) Subsystem density-functional theory. WIREs Comput Mol Sci 4:325–362

    Article  CAS  Google Scholar 

  49. Andersson K, Malmqvist PA, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  50. Malmqvist PA, Pierloot K, Shahi ARM, Cramer JC, Gagliardi L (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J Chem Phys 128:204109

    Article  PubMed  CAS  Google Scholar 

  51. Pierloot K (2011) Transition metals compounds: outstanding challenges for multiconfigurational methods. Int J Quantum Chem 111:3291–3301

    Article  CAS  Google Scholar 

  52. Radoń M, Drablik G (2018) Spin states and other ligand-field states of aqua complexes revisited with multireference ab Initio calculations including solvation effects. J Chem Theory Comput 14:4010–4027

    Article  PubMed  CAS  Google Scholar 

  53. Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory Comput 12:1760–1771

    Article  CAS  PubMed  Google Scholar 

  54. Bao JJ, Dong SS, Gagliardi L, Truhlar DG (2018) Automatic selection of an active space for calculating electronic excitation spectra by MS-CASPT2 or MC-PDFT. J Chem Theory Comput 14:2017–2025

    Article  CAS  PubMed  Google Scholar 

  55. Wouters S, Bogaerts T, van der Voort P, van Speybroeck V, van Neck D (2014) DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn (salen). J Chem Phys 140:241103

    Article  PubMed  CAS  Google Scholar 

  56. Marti KH, Reiher M (2011) New electron correlation theories for transition metal chemistry. Phys Chem Chem Phys 13:6750–6759

    Article  CAS  PubMed  Google Scholar 

  57. Chan GKL, Sharma S (2011) The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem 62:465–481

    Article  CAS  PubMed  Google Scholar 

  58. Li Manni G, Smart SD, Alavi A (2016) Combining the complete active space self-consistent field method and the full configuration interaction quantum monte carlo within a super-CI framework, with application to challenging metal-porphyrins. J Chem Theory Comput 12:1245–1258

    Article  PubMed  CAS  Google Scholar 

  59. Phung QM, Wouters S, Pierloot K (2016) Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: a benchmark study. J Chem Theory Comput 12:4352–4361

    Article  CAS  PubMed  Google Scholar 

  60. Freitag L, Knecht S, Angeli C, Reiher M (2017) Multireference perturbation theory with cholesky decomposition for the density matrix renormalization group. J Chem Theory Comput 13:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2009) On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments. J Chem Phys 130:154102

    Article  PubMed  CAS  Google Scholar 

  62. Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91:651–667

    Article  CAS  Google Scholar 

  63. Escudero D, Thiel W (2014) Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes. J Chem Phys 140:194105

    Article  PubMed  CAS  Google Scholar 

  64. Latouche C, Skouteris D, Palazzetti F, Barone V (2015) TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J Chem Theory Comput 11:3281–3289

    Article  CAS  PubMed  Google Scholar 

  65. Niehaus TA, Hofbeck T, Yersin H (2015) Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory? RSC Adv 5:63318–63329

    Article  CAS  Google Scholar 

  66. Le Bahers T, Brémond E, Ciofini I, Adamo C (2014) The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Phys Chem Chem Phys 16:14435–14444

    Article  PubMed  CAS  Google Scholar 

  67. Fumanal M, Daniel C (2016) Description of excited states in [Re(Imidazole)(CO)3(Phen)]+ including solvent and spin-orbit coupling effects: Density functional theory versus multiconfigurational wavefunction approach. J Comput Chem 37:2454–2466

    Article  CAS  PubMed  Google Scholar 

  68. Georgieva I, Aquino AJA, Trendafilova N, Santos PS, Lischka H (2010) Solvatochromic and ionochromic effects of Iron(II) bis(1, 10-phenanthroline) dicyano: a theoretical study. Inorg Chem 49:1634–1646

    Article  CAS  PubMed  Google Scholar 

  69. Atkins AJ, González L (2017) Trajectory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+. J Phys Chem Lett 8:3840–3845

    Article  CAS  PubMed  Google Scholar 

  70. Atkins AJ, Talotta F, Freitag L, Boggio-Pasqua M, González L (2017) Assessing excited state energy gaps with time-dependent density functional theory on Ru(II) complexes. J Chem Theory and Comput 13:4123–4145

    Article  CAS  Google Scholar 

  71. Gagliardi L, Truhlar DG, Li Manni G, Carlson RK, Hoyer CE, Bao JL (2017) Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc Chem Res 50:66–73

    Article  CAS  PubMed  Google Scholar 

  72. Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-functional theory. J Chem Phys 137:044104

    Article  PubMed  CAS  Google Scholar 

  73. Grimme S, Waletzke M (1999) A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys 111:5645

    Article  CAS  Google Scholar 

  74. Lyskov I, Kleinschmidt M, Marian CM (2016) Redesign of the DFT/MRCI hamiltonian. J Chem Phys 144:034104

    Article  PubMed  CAS  Google Scholar 

  75. Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203

    Article  CAS  Google Scholar 

  76. Pauli W (1927) Zur quantenmechanik des magnetischen elektrons. Z Phys 43:601–623

    Article  CAS  Google Scholar 

  77. Park JW, Shiozaki T (2017) Analytical derivative coupling for multistate CASPT2 theory. J Chem Theory Comput 13:2561–2570

    Article  CAS  PubMed  Google Scholar 

  78. Sand AM, Hoyer CE, Sharkas K, Kidder KM, Lindh R, Truhlar DG, Gagliardi L (2018) Analytic gradients for complete active space pair-density functional theory. J Chem Theory Comput 14:126–138

    Article  CAS  PubMed  Google Scholar 

  79. Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet state of phenyl cation. a hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99

    Article  CAS  Google Scholar 

  80. Heully JL, Alary F, Boggio-Pasqua M (2009) Spin-orbit effects on the photophysical properties of [Ru(bpy)3]2+. J Chem Phys 131:184308

    Article  PubMed  CAS  Google Scholar 

  81. Maeda S, Ohno K, Morokuma K (2009) Automated global mapping of minimal energy points on seams of crossing by the anharmonic downward distortion following method: a case study of H2CO. J Phys Chem A 113:1704–1710

    Article  CAS  PubMed  Google Scholar 

  82. Maeda S, Taketsugu T, Ohno K, Morokuma K (2015) From roaming atoms to hopping surfaces: mapping out global reaction routes in photochemistry. J Am Chem Soc 137:3433–3445

    Article  CAS  PubMed  Google Scholar 

  83. Harabuchi Y, Eng J, Gindensperger E, Taketsugu T, Maeda S, Daniel C (2016) Exploring the mechanism of ultrafast intersystem crossing in rhenium(I) carbonyl bipyridine halide complexes: key vibrational modes and spin-vibronic quantum dynamics. J Chem Theory Comput 12:2335–2345

    Article  CAS  PubMed  Google Scholar 

  84. Niu Y, Peng P, Deng C, Gao X, Shuai Z (2010) Theory of excited state decays and optical spectra: application to polyatomic molecules. J Phys Chem A 114:7817–7831

    Article  CAS  PubMed  Google Scholar 

  85. Minaev B, Baryshnikov G, Ågren H (2014) Principles of phosphorescent organic light emitting devices. Phys Chem Chem Phys 16:1719–1758

    Article  CAS  PubMed  Google Scholar 

  86. Minaev B (1999) The singlet-triplet absorption and photodissociation of the HOCl, HOBr, and HOY molecules calculated by the MCSCF quadratic response method. J Phys Chem A 103:7294–7309

    Article  CAS  Google Scholar 

  87. Mori K, Goumans TPM, van Lenthe E, Wang F (2014) Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin-orbit coupling. Phys Chem Chem Phys 16:14523–14530

    Article  CAS  PubMed  Google Scholar 

  88. Peng Q, Niu Y, Shi Q, Gao X, Shuai Z (2013) Correlation function formalism for triplet excited state decay: combined spin-orbit and nonadiabatic couplings. J Chem Theory Comput 9:1132–1143

    Article  CAS  PubMed  Google Scholar 

  89. Etinski M, Tatchen J, Marian CM (2017) Time-dependent approaches for the calculation of intersystem crossing rates. J Chem Phys 134:154105

    Article  CAS  Google Scholar 

  90. Kleinschmidt M, van Wüllen C, Marian CM (2015) Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions. J Chem Phys 142:094301

    Article  PubMed  CAS  Google Scholar 

  91. Sousa C, de Graaf C, Rudavskyi A, Broer R, Tatchen J, Etinski M, Marian CM (2013) Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe (2, 2-bipyridine)3]2+. Chem Eur J 19:17541–17551

    Article  CAS  PubMed  Google Scholar 

  92. Beck MH, Jäckle A, Worth GA, Meyer HD (2000) The multi-configurational time-dependent hartree approach: a highly efficient algorithm for propagating wavepackets. Phys Rep 324:1–105

    Article  CAS  Google Scholar 

  93. Fumanal M, Gindensperger E, Daniel C (2018) Ultrafast intersystem crossing vs internal conversion in α-diimine transition metal complexes: quantum evidence. J Phys Chem Lett 9:5189–5195

    Article  CAS  PubMed  Google Scholar 

  94. Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071

    Article  CAS  Google Scholar 

  95. Richter M, Marquetand P, González-Vázquez J, Sola I, González L (2011) SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J Chem Theory Comput 7:1253–1258

    Article  CAS  PubMed  Google Scholar 

  96. Mai S, Marquetand P, González L (2018) Nonadiabatic dynamics: the SHARC approach. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1370

  97. Tavernelli I, Curchod B, Rothlisberger U (2011) Nonadiabatic molecular dynamics with solvent effects: a LR-TDDFT QM/MM study of Ruthenium(II) tris (Bipyridine) in water. Chem Phys 391:101–109

    Article  CAS  Google Scholar 

  98. Liu XY, Zhang YH, Fang WH, Cui G (2018) Early-time excited-state relaxation dynamics of iridium compounds: distinct roles of electron and hole transfer. J Phys Chem A 122:5518–5532

    Article  CAS  PubMed  Google Scholar 

  99. Jacquemin D, Escudero D (2018) Thermal equilibration between excited states or solvent effects: unveiling the origins of anomalous emissions in heteroleptic Ru(II) complexes. Phys Chem Chem Phys 20:11559–11563

    Article  CAS  PubMed  Google Scholar 

  100. Kamecka A, Muszynska W, Kapturkiewicz A (2017) Luminescence properties of heteroleptic [Ru(H)(CO)(N^N)(tpp)2]+ complexes: comparison with their [Os(H)(CO)(N^N)(tpp)2]+ analogues. J Lumin 192:842–852

    Google Scholar 

  101. Escudero D, Jacquemin D (2015) Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Trans 44:8346–8355

    Article  CAS  PubMed  Google Scholar 

  102. El-Sayed M (1963) Spin orbit coupling and the radiationless processes in nitrogen heterocyclics. J Chem Phys 38:2834–2838

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Escudero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escudero, D. (2019). Photodeactivation Channels of Transition Metal Complexes: A Computational Chemistry Perspective. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_9

Download citation

Publish with us

Policies and ethics