Skip to main content

Challenges in Modelling Metalloenzymes

  • Chapter
  • First Online:
Transition Metals in Coordination Environments

Abstract

Modelling structure and/or reaction mechanism of a metalloenzyme requires constructing reliable computational models. This process usually starts with crystal structure and involves several steps, each potentially influencing the accuracy of the constructed model. In this chapter, we provide an account, from our own works and from the literature, on how one can check the quality of the crystal structure, predict protonation states of titratable residues, including the metal ligands, perform molecular dynamics simulations, chose representative snapshots, and finally, construct a QM cluster model that can be used for mechanistic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ (2013) Biochim Biophys Acta Bioenerg 1827:871

    Article  CAS  Google Scholar 

  2. Lovell T (2003) Coord Chem Rev 238–239:211

    Article  Google Scholar 

  3. Andreini C, Bertini I, Rosato A (2009) Acc Chem Res 42:1471

    Article  CAS  Google Scholar 

  4. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) JBIC J Biol Inorg Chem 13:1205

    Google Scholar 

  5. Jernigan R, Raghunathan G, Bahar I (1994) Curr Opin Struct Biol 4:256

    Article  CAS  Google Scholar 

  6. Mitchell AJ, Dunham NP, Martinie RJ, Bergman JA, Pollock CJ, Hu K, Allen BD, Chang WC, Silakov A, Bollinger JM, Krebs C, Boal AK (2017) J Am Chem Soc 139:13830

    Google Scholar 

  7. Kovaleva EG, Lipscomb JD (2007) Science 316:453

    Article  CAS  Google Scholar 

  8. Zheng H, Chordia MD, Cooper DR, Chruszcz M, Müller P, Sheldrick GM, Minor W (2013) Nat Protoc 9:156

    Article  Google Scholar 

  9. Zheng H, Cooper DR, Porebski PJ, Shabalin IG, Handing KB, Minor W (2017) Acta Crystallogr Sect D Struct Biol 73:223

    Article  CAS  Google Scholar 

  10. Fernández-Leiro R, Pereira-Rodríguez Á, Cerdán ME, Becerra M, Sanz-Aparicio J (2010) J Biol Chem 285:28020

    Article  Google Scholar 

  11. Ryde U, Nilsson K (2003) J Mol Struct THEOCHEM 632:259

    Article  CAS  Google Scholar 

  12. Nilsson K, Ryde U (2004) J Inorg Biochem 98:1539

    Article  CAS  Google Scholar 

  13. Cao L, Caldararu O, Ryde U (2017) J Phys Chem B 121:8242

    Article  CAS  Google Scholar 

  14. Ryde U(2007) Dalt Trans 607

    Google Scholar 

  15. Orry AJW, Abagyan R (eds) (2012) Homology modeling. Humana Press, Totowa, NJ

    Google Scholar 

  16. Webb B, Sali A (2016) Current protocols in bioinformatics. Wiley, Hoboken, NJ, USA, pp 5.6.1–5.6.37

    Google Scholar 

  17. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2014) Nat Methods 12:7

    Article  Google Scholar 

  18. Bordoli L, Schwede, T (2011) Methods Mol Biol, 107–136

    Google Scholar 

  19. Kluza A, Niedzialkowska E, Kurpiewska K, Wojdyla Z, Quesne M, Kot E, Porebski PJ, Borowski T (2018) J Struct Biol 202:229

    Article  CAS  Google Scholar 

  20. Fiser A, Do RK, Sali A, Fiser A, Kinh R, Do G, Andrej S (2000) Protein Sci 9:1753

    Article  CAS  Google Scholar 

  21. Lee J, Lee D, Park H, Coutsias EA, Seok C (2010) Proteins Struct Funct Bioinforma 78:3428

    Article  CAS  Google Scholar 

  22. Tang K, Zhang J, Liang J (2014) PLoS Comput Biol 10:e1003539

    Article  Google Scholar 

  23. Höppner A, Widderich N, Lenders M, Bremer E, Smits SHJ (2014) J Biol Chem 289:29570

    Article  Google Scholar 

  24. Reuter K, Pittelkow M, Bursy J, Heine A, Craan T, Bremer E (2010) PLoS ONE 5:e10647

    Article  Google Scholar 

  25. Melo F, Feytmans E (1998) J Mol Biol 277:1141

    Article  CAS  Google Scholar 

  26. Sali A, Sali, A (2006) Protein Sci, 2507

    Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283

    Article  CAS  Google Scholar 

  28. Widderich, N, Hop̈pner, A, Pittelkow M, Heider J, Smits SHJ, Bremer E (2014) PLoS One 9

    Google Scholar 

  29. Ullmann GM, Bombarda E (2014) Protein model. Springer, Cham, pp 135–163

    Google Scholar 

  30. Nielsen, JE (2008) In: Annual reports in computational chemistry. Elsevier, pp 89–106

    Google Scholar 

  31. Iwai W, Yagi D, Ishikawa T, Ohnishi Y, Tanaka I, Niimura N (2008) J Synchrotron Radiat 15:312

    Article  CAS  Google Scholar 

  32. Moser A, Range K, York DM (2010) J Phys Chem B 114:13911

    Article  CAS  Google Scholar 

  33. Thurlkill RL, Grimsley GR, Scholtz JM, Pace CN (2006) Protein Sci 15:1214

    Article  CAS  Google Scholar 

  34. Jensen JH, Li H, Robertson AD, Molina PA (2005) J Phys Chem A 109:6634

    Article  CAS  Google Scholar 

  35. Awoonor-Williams E, Rowley CN (2016) J Chem Theory Comput 12:4662

    Article  CAS  Google Scholar 

  36. Nielsen, JE, Gunner MR, García-Moreno BE (2011) Proteins Struct Funct Bioinforma 79:3249

    Google Scholar 

  37. Wasilewska M, Adamczyk Z, Jachimska B (2009) Langmuir 25:3698

    Article  CAS  Google Scholar 

  38. Righetti PG (2004) J Chromatogr A 1037:491

    Article  CAS  Google Scholar 

  39. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:525

    Article  CAS  Google Scholar 

  40. Spassov VZ, Yan L (2008) Protein Sci 17:1955

    Article  CAS  Google Scholar 

  41. Kumosinski TF, Brown EM, Farrell HM (1994) In: Molecular modeling from virtual tools to real problems, pp 368–390

    Google Scholar 

  42. Kumosinski TF, Brown EM, Farrell HM (1993) J Dairy Sci 76:931

    Article  CAS  Google Scholar 

  43. Uranga J, Mikulskis P, Genheden S, Ryde U (2012) Comput. Theor Chem 1000:75

    Article  CAS  Google Scholar 

  44. Szyk-Warszyńska L, Gergely C, Jarek E, Cuisinier F, Socha RP, Warszyński P (2009) Colloids Surf A Physicochem Eng Asp 343:118

    Article  Google Scholar 

  45. Ui N (1971) Biochim Biophys Acta Protein Struct 229:582

    Article  CAS  Google Scholar 

  46. Jachimska B, Wasilewska M, Adamczyk Z (2008) Langmuir 24:6866

    Article  CAS  Google Scholar 

  47. Wasilewska M, Adamczyk Z (2011) Langmuir 27:686

    Article  CAS  Google Scholar 

  48. Ullmann MG, Noodleman L, Case DA (2002) JBIC J Biol Inorg Chem 7:632

    Google Scholar 

  49. Bombarda E, Ullmann GM (2010) J Phys Chem B 114:1994

    Article  CAS  Google Scholar 

  50. Noodleman L, Han W-G (2006) JBIC J Biol Inorg Chem 11:674

    Google Scholar 

  51. Bashford D (1991) Curr Opin Struct Biol 1:175

    Article  CAS  Google Scholar 

  52. Bashford D, Gerwert K (1992) J Mol Biol 224:473

    Article  CAS  Google Scholar 

  53. Lim C, Bashford D, Karplus M (1991) J Phys Chem 95:5610

    Article  CAS  Google Scholar 

  54. Bashford D, Case DA, Dalvit C, Tennant L, Wright PE (1993) Biochemistry 32:8045

    Article  CAS  Google Scholar 

  55. Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Proc Natl Acad Sci 88:5804

    Article  CAS  Google Scholar 

  56. Li J, Nelson MR, Peng CY, Bashford D, Noodleman L (1998) J Phys Chem A 102:6311

    Article  CAS  Google Scholar 

  57. Fisher CL, Chen J-L, Li J, Bashford D, Noodleman L (1996) J Phys Chem 100:13498

    Article  CAS  Google Scholar 

  58. Li P, Merz KM (2014) J Chem Theory Comput 10:289

    Article  CAS  Google Scholar 

  59. Widderich N, Pittelkow M, Höppner A, Mulnaes D, Buckel W, Gohlke H, Smits SHJ, Bremer E (2014) J Mol Biol 426:586

    Article  CAS  Google Scholar 

  60. Torabifard H, Cisneros GA (2017) Chem Sci 8:6230

    Article  CAS  Google Scholar 

  61. Li P, Song LF, Merz KM (2015) J Phys Chem B 119:883

    Article  CAS  Google Scholar 

  62. Li P, Song LF, Merz KM (2015) J Chem Theory Comput 11:1645

    Article  CAS  Google Scholar 

  63. Seminario JM (1996) Int J Quantum Chem 60:1271

    Article  Google Scholar 

  64. Hu L, Ryde U (2011) J Chem Theory Comput 7:2452

    Article  CAS  Google Scholar 

  65. Xiang JY, Ponder JW (2013) J Comput Chem 34:739

    Article  CAS  Google Scholar 

  66. Xiang JY, Ponder JW (2014) J Chem Theory Comput 10:298

    Article  CAS  Google Scholar 

  67. Jing Z, Qi R, Liu C, Ren P (2017) J Chem Phys 147:161733

    Article  Google Scholar 

  68. Wojdyla Z, Borowski T (2018) JBIC J Biol Inorg Chem 23:795

    Google Scholar 

  69. Liao H-J, Li J, Huang J-L, Davidson M, Kurnikov I, Lin T-S, Lee JL, Kurnikova M, Guo Y, Chan N-L, Chang W (2018) Angew Chemie Int Ed 57:1831

    Article  CAS  Google Scholar 

  70. Świderek K, Arafet K, Kohen A, Moliner V (2017) J Chem Theory Comput 13:1375

    Article  Google Scholar 

  71. Rétey J (1990) Angew Chemie Int Ed English 29:355

    Article  Google Scholar 

  72. Vögeli B, Erb TJ (2018) Curr Opin Chem Biol 47:94

    Article  Google Scholar 

  73. Miłaczewska A, Kot E, Amaya JA, Makris TM, Zając M, Korecki J, Chumakov A, Trzewik B, Kędracka-Krok S, Minor W, Chruszcz M, Borowski T (2018) Chem A Eur J 24:5225

    Google Scholar 

  74. Vallee BL, Williams RJ (1968) Proc Natl Acad Sci 59:498

    Article  CAS  Google Scholar 

  75. Pushie MJ, George GN (2011) Coord Chem Rev 255:1055

    Article  CAS  Google Scholar 

  76. Luthra A, Denisov IG, Sligar SG (2011) Arch Biochem Biophys 507:26

    Article  CAS  Google Scholar 

  77. Siegbahn PEM (2009) Acc Chem Res 42:1871

    Article  CAS  Google Scholar 

  78. Williams RJP (1995) Eur J Biochem 234:363

    Article  CAS  Google Scholar 

  79. Stanek J, Hoffmann A, Herres-Pawlis S (2018) Coord Chem Rev 365:103

    Article  CAS  Google Scholar 

  80. Warelow TP, Pushie MJ, Cotelesage JJH, Santini JM, George GN (2017) Sci Rep 7:1757

    Article  Google Scholar 

  81. Szaleniec M, Borowski T, Schühle K, Witko M, Heider J (2010) J Am Chem Soc 132:6014

    Article  CAS  Google Scholar 

  82. Szaleniec M, Dudzik A, Kozik B, Borowski T, Heider J, Witko M (2014) J Inorg Biochem 139:9

    Article  CAS  Google Scholar 

  83. Donahue JP, Goldsmith CR, Nadiminti U, Holm RH (1998) J Am Chem Soc 120:12869

    Article  CAS  Google Scholar 

  84. Enemark JH, Cooney JJA, Wang J-J, Holm RH (2004) Chem Rev 104:1175

    Article  CAS  Google Scholar 

  85. Li H-K, Temple C, Rajagopalan KV, Schindelin H (2000) J Am Chem Soc 122:7673

    Article  CAS  Google Scholar 

  86. Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJ, Moura I, Romão MJ (1999) Structure 7:65

    Google Scholar 

  87. Czjzek M, Dos Santos J-P, Pommier J, Giordano G, Méjean V, Haser R (1998) J Mol Biol 284:435

    Article  CAS  Google Scholar 

  88. Bray RC, Adams B, Smith AT, Bennett B, Bailey S (2000) Biochemistry 39:11258

    Article  CAS  Google Scholar 

  89. Kloer DP, Hagel C, Heider J, Schulz GE (2006) Structure 14:1377

    Article  CAS  Google Scholar 

  90. Raaijmakers HCA, Romão MJ (2006) JBIC J Biol Inorg Chem 11:849

    Google Scholar 

  91. Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Maglaqui AP, Gau-Pan PS, Redford SA, Wong A, Tainer JA, Coates JD (2016) J Biol Chem 291:9190

    Article  CAS  Google Scholar 

  92. Leopoldini M, Russo N, Toscano M, Dulak M, Wesolowski TA (2006) Chem A Eur J 12:2532

    Article  CAS  Google Scholar 

  93. McNamara JP, Hillier IH, Bhachu TS, Garner CD (2005) Dalt Trans 0:3572

    Google Scholar 

  94. Rugor A, Wójcik-Augustyn A, Niedzialkowska E, Mordalski S, Staroń J, Bojarski A, Szaleniec M (2017) J Inorg Biochem 173:28

    Article  CAS  Google Scholar 

  95. Iwata S, Saynovits M, Link TA, Michel H (1996) Structure of a water soluble fragment of the ‘Rieske’ iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 A resolution. Structure 4:567–579

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by PL-Grid Infrastructure. Computations were performed in the AGH Cyfronet Supercomputer Centre. Authors acknowledge financial support of the statutory research fund of ICSC PAS. M. Sz. acknowledges the input of Ewelina Biała, the undergraduate student conducting modeling of S25DH under supervision of M. Sz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomasz Borowski or Maciej Szaleniec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borowski, T., Szaleniec, M. (2019). Challenges in Modelling Metalloenzymes. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_17

Download citation

Publish with us

Policies and ethics