Skip to main content

Fluctuation, Dissipation, and Non-Boltzmann Energy Distributions

  • Chapter
  • First Online:
Emergence of Temperature in Examples and Related Nuisances in Field Theory

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

After reviewing the field theoretical description of the conventional thermal equilibrium and studying the linear relaxation to this equilibrium, it is interesting to consider problems arising in small systems not satisfying the pre-requisites for the Gibbs–Boltzmann treatment. In this chapter, we discuss general questions of thermal ensembles and the stochastic dynamics picture of a practically unknown environment, and at the end we sketch briefly the way the Keldysh formalism incorporates physical noise into its descriptive framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A notable exception is provided by black hole horizons, where \(S(E)\sim E^2\), \(S^{\prime }(E)\sim E\), and \(S^{\prime \prime }(E) \propto {\mathscr {O}}(1) > 0\), with a seemingly negative specific heat. For classical ideal gases, on the other hand, \(S(E,N)=aN\ln (E/NT_0)\) and \(\partial S/\partial E = aN/E=1/T\), while \(\partial ^2S/\partial E^2 = -aN/E^2=-1/Nc_VT^2\) delivers a positive and constant specific heat at fixed volumes: \(c_N=1/a\).

  2. 2.

    The choice of this range is motivated by the fact that the function \(\sin x/x\) differs from zero mainly in this interval.

  3. 3.

    It has a destabilizing effect for Hamiltonians \(H_\mathrm{s}(P,Q)\) with an energy minimum at \(Q=0\).

  4. 4.

    By analogy with the previously discussed oscillator bath, \(\varphi \sim Q\) and \(\chi \sim q_i\).

  5. 5.

    Pure vacuum contributions, like \(\int S(k)S(p-k)\), are neglected here.

References

  1. Y. Takahashi, H. Umezawa, Thermofield dynamics. Collective Phenom. 2(55) (1975). (Reprinted: J. Mod. Phys. B 10, 1755, 1996.)

    Google Scholar 

  2. H. Umezawa, Advanced Field Theory Macro and Thermal Physics (AIP Press, New York, Micro, 1995)

    Google Scholar 

  3. Run-Qin Yang, A complexity of quantum field theory states and application in thermofield double states. Phys. Rev. D 97, 066004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. R.A. Fisher: The Negative Binomial Distribution, Blackwell Publishing Ltd. University College London (1941)

    Google Scholar 

  5. M. Joseph, Hilbe: Negative Binomial Regression (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  6. H. Abdel El-Shaarawi, Negative binomial Distribution—Applications, in Wiley StatsRef: Statistical Reference Online. https://doi.org/10.1002/9781118445112.stat07353

  7. M. Arneodo et al., (EMC): comparison of multiplicity distributions to the negative binomial distribution in muon-proton scattering. Z. Phys. C 35, 335 (1987)

    Article  ADS  Google Scholar 

  8. O.G. Tchikilev, Modified negative binomial description of the multiplicity distributions in lepton-nucleon scattering. Phys. Lett. B 388, 848 (1996)

    Article  ADS  Google Scholar 

  9. A. Adare et.al. (PHENIX), Charged hadron multiplicity fluctuations in Au + Au and Cu + Cu collisions from \(\sqrt{s_{NN}}=\) 22.5 to 200 GeV. Phys. Rev. C 78, 044902 (2008)

    Google Scholar 

  10. ALICE Collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in proton–proton collisions at \(\sqrt{s}=\) 0.9 and 2.36 TeV with ALICE at LHC, EPJ C 68, 89 (2010)

    Google Scholar 

  11. G. Wilk, Z. Wlodarczyk, How to retrieve additional information from the multiplicity distributions. J. Phys. G 44, 015002 (2017)

    Article  ADS  Google Scholar 

  12. R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)

    Google Scholar 

  13. R. Hagedorn, Nuovo Cimento A 52, 64 (1967)

    Article  Google Scholar 

  14. R. Hagedorn, Riv. Nuovo Cimento 6, 1 (1983)

    Article  MathSciNet  Google Scholar 

  15. J. Rafelski (Ed.), Melting Hadrons, Boiling Quarks–From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN, SpringerOpen (2016)

    Google Scholar 

  16. P. Vilfredo, La courbe de la répartition de la richesse, (Orig. pub., in 1965 Œuvres complètes de Vilfredo Pareto, ed. by G. Busino (Librairie Droz, Geneva, 1896)

    Google Scholar 

  17. R. Koch, Living the 80/20 Way: Work Less, Worry Less, Succeed More, Enjoy More (Nicholas Bearley Pub, London, 2004)

    Google Scholar 

  18. W.J. Reed, The Pareto Zipf and other power laws. Econom. Lett. 74, 15 (2001)

    Article  Google Scholar 

  19. C. Tsallis, Nonadditive entropy: the concept and its use. EPJ A 40, 257 (2009)

    Article  ADS  Google Scholar 

  20. C.-Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis, From QCD-based hard-scattering to nonextensive statistical mechanical description of transverse momentum spectra in high-energy \(pp\) and \(p\overline{p}\) collisions, Phys. Rev. D 91, 114027 (2015)

    Google Scholar 

  21. M. Biyajima, T. Mizoguchi, N. Nakajima, N. Suzuki, G. Wilk, Modified Hagedorn formula including temperature fluctuation—estimation of temperatures at RHIC experiments. EPJ C 48, 597 (2006)

    ADS  Google Scholar 

  22. J.M. Zhang, Y. Liu, Fermi’s golden rule: its derivation and breakdown by an ideal model. Eur. J. Phys. 37, 065406 (2016)

    Article  Google Scholar 

  23. R.P. Feynman, F.L. Vernon, The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  24. T.S. Biro, Is there a temperature? Fundamental Theories of Physics 1014 (Springer, 2011)

    Google Scholar 

  25. P.M. Stevenson, Gaussian effective potential: quantum mechanics. Phys. Rev. D 30, 1712 (1984)

    Article  ADS  Google Scholar 

  26. P.M. Stevenson, Gaussian effective potential II: \(\lambda \varphi ^4\) field theory. Phys. Rev. D 32, 1389 (1985)

    Article  ADS  Google Scholar 

  27. P.M. Stevenson, Gaussian Effective Potential III: \(\varphi ^6\) theory and bound states. Phys. Rev. D 33, 2305 (1985)

    Article  ADS  Google Scholar 

  28. A. Einstein: Zur Theorie der Brownschen Bewegung, Ann. Phys. 17, 549, 1905; 19, 371, 1906

    Google Scholar 

  29. P. Langevin, Sur la théorie du mouvement brownien, Comptes Rendus Acad. Sci. (Paris) 146, 530 (1908)

    Google Scholar 

  30. A.D. Fokker, Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys. 43, 43 (1914)

    Google Scholar 

  31. M. Planck: Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie, Sitz. Ber. Preuss. Akad. Wiss. 324 (1917)

    Google Scholar 

  32. H. Risken, The Fokker-Planck Equation (Methods of Solution and Applications, Springer, New York, 1989)

    Book  Google Scholar 

  33. C. Greiner: Interpretation Thermischer Feldtheorie mit Hilfe von Langevin-Prozessen, (in German), Habilitation thesis, Justus-Liebig University Giessen (1999)

    Google Scholar 

  34. E. Cortés, B.J. West, K. Lindenberg, On the generalized Langevin equation: classical and quantum mechanical. J. Chem. Phys. 82, 2708 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  35. T.S. Biró, G. Purcsel, G. Györgyi, A. Jakovác, Z. Schram, Power-law tailed spectra from equilibrium. Nucl. Phys. A 774, 845 (2006)

    Article  ADS  Google Scholar 

  36. T.S. Biro, A. Jakovac, Power-law tails from multiplicative noise. Phys. Rev. Lett. 94, 132302 (2005)

    Article  ADS  Google Scholar 

  37. Walter Hans Schottky, Über spontane Stromschwankungen in verschiedenen Elektrizttsleitern. Annalen der Physik 57, 541 (1918)

    Article  Google Scholar 

  38. R. Allard, J. Faubert, D.G. Pelli (eds.), Using noise to characterize vision (Frontiers in Psychology, Frontiers Media SA, 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Sándor Biró .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biró, T.S., Jakovác, A. (2019). Fluctuation, Dissipation, and Non-Boltzmann Energy Distributions. In: Emergence of Temperature in Examples and Related Nuisances in Field Theory. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-11689-7_5

Download citation

Publish with us

Policies and ethics