Skip to main content

Modeling and Analysis of Fractional Leptospirosis Model Using Atangana–Baleanu Derivative

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

  • 725 Accesses

Abstract

In this chapter, a fractional epidemic model for the leptospirosis disease with Atangana–Baleanu (AB) derivative is formulated. Initially, we present the model equilibria and basic reproduction number. The local stability of disease free equilibrium point is proved using fractional Routh Harwitz criteria. The Picard–Lindelof method is applied to show the existence and uniqueness of solutions for the model. A numerical scheme using Adams–Bashforth method for solving the proposed fractional model involving the AB derivative is presented. Finally, numerical simulations are performed in order to validate the importance of the arbitrary order derivative. The numerical result shows that the fractional order plays an important role to better understand the dynamics of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marr, J.S., Cathey, J.T.: New hypothesis for cause of epidemic among native 236 americans, new england, 1616–1619. Emerg. Infect. Dis. 16(2), 1–281 (2010)

    Article  Google Scholar 

  2. Victoriano, A.F.B., Smythe, L.D., Barzaga, N.G., Cavinta, L.L., Kasai, T., Limpakarnjanarat, K., Ong, B.L., Gongal, G., Hall, J., Coulombe, C.A.: Leptospirosis in the asia pacific region. BMC Infect. Dis. 9(1), 1–147 (2009)

    Article  Google Scholar 

  3. Holt, J., Davis, S., Leirs, H.: A model of leptospirosis infection in an African rodent to determine risk to humans: seasonal fluctuations and the impact of rodent control. Acta Trop. 99(2–3), 218–225 (2006)

    Article  Google Scholar 

  4. Okosun, K.O., Mukamuri, M., Makinde, D.O.: Global stability analysis and control of leptospirosis. Open Math. 14(1), 567–585 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baca-Carrasco, D., Olmos, D., Barradas, I.: A mathematical model for human and animal leptospirosis. J. Biol. Syst. 23(01), 55–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chadsuthi, S., Modchang, C., Lenbury, Y., Iamsirithaworn, S., Triampo, W.: Modeling seasonal leptospirosis transmission and its association with rainfall and temperature in Thailand using time-series and ARIMAX analyses. Asian Pac. J. Trop. Med. 5(7), 539–546 (2012)

    Article  Google Scholar 

  7. Khan, M.A., Saddiq, S.F., Islam, S., Khan, I., Shafie, S.: Dynamic behavior of leptospirosis disease with saturated incidence rate. Int. J. Appl. Comput. Math. 2(4), 435–452 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sadiq, S.F., Khan, M.A., Islam, S., Zaman, G., Jung, H., Khan, S.A.: Optimal control of an epidemic model of leptospirosis with nonlinear saturated incidences. Annu. Res. Rev. Biol. 4(3), 560–576 (2014)

    Article  Google Scholar 

  9. Khan, M.A., Zaman, G., Islam, S., Chohan, M.I.: Optimal campaign in leptospirosis epidemic by multiple control variables. Appl. Math. 3(11), 1655–1663 (2012)

    Article  Google Scholar 

  10. Khan, M.A., Islam, S., Khan, S.A., Khan, I., Shafie, S., Gul, T.: Prevention of Leptospirosis infected vector and human population by multiple control variables. Abstr. Appl. Anal. (Hindawi) 1, 1–14 (2014)

    MATH  Google Scholar 

  11. Sadiq, S.F., Khan, M.A., Islam, S., Zaman, G., Jung, H., Khan, S.A.: Optimal control of an epidemic model of leptospirosis with nonlinear saturated incidences. Annu. Res. Rev. Biol. 4(3), 560–576 (2014)

    Article  Google Scholar 

  12. Khan, M.A., Islam, S., Khan, S.A.: Mathematical modeling towards the dynamical interaction of leptospirosis. Appl. Math. Inf. Sci. 8(3), 1–8 (2014)

    Article  Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic, San Diego (1999)

    MATH  Google Scholar 

  14. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  15. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  16. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  17. Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys. A Stat. Mech. Appl. 505, 688–706 (2018)

    Article  MathSciNet  Google Scholar 

  18. Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–22 (2018)

    Article  Google Scholar 

  20. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Phys. A Stat. Mech. Appl. 476, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  22. Gómez-Aguilar, J.F., Dumitru, B.: Fractional transmission line with losses. Zeitschrift für Naturforschung A 69(10–11), 539–546 (2014)

    Article  Google Scholar 

  23. Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 2016(1), 1–17 (2016)

    Article  MATH  Google Scholar 

  24. Yépez-Martínez, H., Gómez-Aguilar, J.F., Sosa, I.O., Reyes, J.M., Torres-Jiménez, J.: The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Rev. Mex. Fís 62(4), 310–316 (2016)

    MathSciNet  Google Scholar 

  25. Saad, K.M., Gómez-Aguilar, J.F.: Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel. Phys. A Stat. Mech. Appl. 509, 703–716 (2018)

    Article  MathSciNet  Google Scholar 

  26. Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 30(15), 1937–1952 (2016)

    Article  Google Scholar 

  27. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.l.: Bateman-Feshbach tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)

    Article  Google Scholar 

  28. Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., Astorga-Zaragoza, C.M., Morales-Mendoza, L.J., González-Lee, M.: Universal character of the fractional space-time electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 29(6), 727–740 (2015)

    Article  Google Scholar 

  29. Saad, K.M., Gómez-Aguilar, J.F.: Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense. Rev. Mex. Fís. 64(5), 539–547 (2018)

    Article  MathSciNet  Google Scholar 

  30. Coronel-Escamilla, A., Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Guerrero-Ramírez, G.V.: Triple pendulum model involving fractional derivatives with different kernels. Chaos Solitons Fractals 91, 248–261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–13 (2017)

    Article  Google Scholar 

  32. Alkahtani, B.S.T.: Chua’s circuit model with Atangana-Baleanu derivative with fractional order. Chaos Solitons Fractals 89, 547–551 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., Astorga-Zaragoza, C.M., Reyes-Reyes, J.: Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl. Math. Model. 40(21–22), 9079–9094 (2016)

    Article  MathSciNet  Google Scholar 

  34. Toufik, M., Atangana, A.: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur. Phys. J. Plus 132, 444 (2017)

    Google Scholar 

  35. Algahtani, O.J.J.: Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model. Chaos Solitons Fractals 89, 552–559 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gómez-Aguilar, J.F.: Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A Stat. Mech. Appl. 494, 52–75 (2018)

    Article  MathSciNet  Google Scholar 

  37. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Valtierra-Rodríguez, M., Escobar-Jiménez, R.F.: Design of a state observer to approximate signals by using the concept of fractional variable-order derivative. Digit. Signal Process. 69, 127–139 (2017)

    Article  Google Scholar 

  38. Solís-Pérez, J.E., Gómez-Aguilar, J.F., Atangana, A.: Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Solitons Fractals 114, 175–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Alkahtani, B.S.T., Atangana, A., Koca, I.: Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators. J. Nonlinear Sci. Appl. 10, 3191–3200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Koca, I.: Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators. Eur. Phys. J. Plus 133(3), 1–16 (2018)

    Article  Google Scholar 

  41. Morales-Delgado, V.F., Gómez-Aguilar, J.F., Taneco-Hernándeza, M.A., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel. J. Nonlinear Sci. Appl. 11, 994–1014 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Khan, M.A., Saddiq, S.F., Islam, S., Khan, I., Ching, D.L.C.: Epidemic model of leptospirosis containing fractional order. Abstr. Appl. Anal. (Hindawi) 1, 1–13 (2014)

    MATH  Google Scholar 

  43. El-Shahed, M.: Fractional order model for the spread of leptospirosis. Int. J. Math. Anal. 8(54), 2651–2667 (2014)

    Article  Google Scholar 

  44. Zaman, G., Khan, M.A., Islam, S., Chohan, M.I., Jung, I.H.: Modeling dynamical interactions between leptospirosis infected vector and human population. Appl. Math. Sci. 6(26), 1287–1302 (2012)

    MATH  Google Scholar 

  45. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358(1), 1–4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Altaf Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ullah, S., Khan, M.A. (2019). Modeling and Analysis of Fractional Leptospirosis Model Using Atangana–Baleanu Derivative. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics