Skip to main content

Exact Solutions for the Liénard Type Model via Fractional Homotopy Methods

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Abstract

In this chapter, we present the solution for a Liénard type model of a pipeline expressed by Liouville–Caputo and Atangana-Baleanu-Caputo fractional order derivatives. For this model, new approximated analytical solutions are derived by using the Laplace homotopy perturbation method and the modified homotopy analysis transform method. Both the efficiency and the accuracy of the method are verified by comparing the obtained solutions versus the exact analytical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong, D.: Explicit exact solutions for the Liénard equation and its applications. Phys. Lett. A 196, 301–306 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kudryashov, N.A., Sinelshchikov, D.I.: On the connection of the quadratic Liénard equation with an equation for the elliptic functions. Regul. Chaotic Dyn. 20(4), 486–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nowak, W., Geiyer, D., Das, T.: Absolute Stability analysis using the Liénard equation: a study derived from control of fuel cell ultracapacitor hybrids. J. Dyn. Syst. Meas. Control. 138(3), 1–22 (2016)

    Article  Google Scholar 

  4. Sinha, M., Dörfler, F., Johnson, B.B., Dhople, S.V.: Synchronization of Liénard-type oscillators in uniform electrical networks. In: American Control Conference, vol. 1. IEEE, pp. 4311–4316 (2016)

    Google Scholar 

  5. Martins, R.M., Mereu, A.C.: Limit cycles in discontinuous classical Liénard equations. Nonlinear Anal. R. World Appl. 20, 67–73 (2014)

    Article  MATH  Google Scholar 

  6. Harko, T., Liang, S.D.: Exact solutions of the Liénard-and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator. J. Eng. Math. 98(1), 93–111 (2016)

    Article  MATH  Google Scholar 

  7. Kudryashov, N.A., Sinelshchikov, D.I.: On the integrability conditions for a family of Liénard-type equations. Regul. Chaotic Dyn. 21(5), 548–555 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, Z.: On explicit exact solutions for the Liénard equation and its applications. Phys. Lett. A 239, 50–56 (2002)

    Article  MATH  Google Scholar 

  9. Matinfar, M., Hosseinzadeh, H., Ghanbari, M.: A numerical implementation of the variational iteration method for the Liénard equation. World J. Model. Simul. 4, 205–210 (2008)

    MATH  Google Scholar 

  10. Matinfar, M., Mahdavi, M., Raeisy, Z.: Exact and numerical solution of Liénard’s equation by the variational homotopy perturbation method. J. Inf. Comput. Sci. 6(1), 73–80 (2011)

    Google Scholar 

  11. Torres, L., Besancon, G., Verde, C.: Liénard type model of fluid flow in pipelines: application to estimation. In: 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control, vol. 1. IEEE, pp. 1–6 (2015)

    Google Scholar 

  12. Torres, L., Aguiñaga, J.A.D., Besancon, G., Verde, C., Begovich, O.: Equivalent Liénard-type models for a fluid transmission line. Comptes Rendus Mécanique 344(8), 582–595 (2016)

    Article  Google Scholar 

  13. Jiménez, J., Torres, L., Rubio, I., Sanjuan, M.: Auxiliary signal design and Liénard-type models for identifying pipeline parameters. Modeling and Monitoring of Pipelines and Networks, vol. 1, pp. 99–124. Springer International Publishing, Berlin (2017)

    Chapter  Google Scholar 

  14. Singh, J., Kumar, D., Qurashi, M.A., Baleanu, D.: Analysis of a new fractional model for damped Bergers’ equation. Open Phys. 15(1), 35–41 (2017)

    Article  Google Scholar 

  15. Hristov, J.: Space-fractional diffusion with a potential power-law coefficient: transient approximate solution. Progr. Fract. Differ. Appl. 3(1), 19–39 (2017)

    Article  MathSciNet  Google Scholar 

  16. Owolabi, K.M., Atangana, A.: Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems. Comput. Appl. Math. 1, 1–24 (2017)

    MATH  Google Scholar 

  17. Owolabi, K.M., Atangana, A.: Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions. Adv. Differ. Equ. 1, 1–24 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Kumar, S., Kumar, A., Odibat, Z.M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 1, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Solutions with Wright function for time fractional free convection flow of Casson fluid. Arab. J. Sci. Eng. 42(6), 2565–2572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14(1), 145–149 (2016)

    Article  Google Scholar 

  21. Atangana, A.: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput. Appl. 26(8), 1895–1903 (2015)

    Article  Google Scholar 

  22. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  23. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Fractional Differential Equations. Academic, San Diego (1999)

    MATH  Google Scholar 

  24. Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 1, 1–21 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular Kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  26. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular Kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  27. Pirim, N.A., Ayaz, F.: A new technique for solving fractional order systems: Hermite collocation method. Appl. Math. 7(18), 1–12 (2016)

    Article  Google Scholar 

  28. Choudhary, S., Daftardar-Gejji, V.: Invariant subspace method: a tool for solving fractional partial differential equations (2016). arXiv:1609.04209

  29. Hamarsheh, M., Ismail, A.I., Odibat, Z.: An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method. Appl. Math. Sci. 10(23), 1131–1150 (2016)

    Google Scholar 

  30. Ghorbani, A.: Beyond Adomain’s polynomials: He’s polynomials. Chaos Solitons Fractals 39, 1486–1492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rathore, S., Kumar, D., Singh, J., Gupta, S.: Homotopy analysis Sumudu transform method for nonlinear equations. Int. J. Ind. Math. 4(4), 301–314 (2012)

    Google Scholar 

  32. Atangana, A., Alabaraoye, E.: Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations. Adv. Differ. Equ. 94, 1–14 (2013)

    MATH  Google Scholar 

  33. Vahidi, J.: The combined Laplace-homotopy analysis method for partial differential equations. J. Math. Comput. Sci.-JMCS 16(1), 88–102 (2016)

    Article  Google Scholar 

  34. Atangana, A.: Extension of the Sumudu homotopy perturbation method to an attractor for onedimensional Keller-Segel equations. Appl. Math. Model. 39, 2909–2916 (2015)

    Article  MathSciNet  Google Scholar 

  35. Pandey, R.K., Mishra, H.K.: Homotopy analysis Sumudu transform method for time-fractional third order dispersive partial differential equation. Adv. Comput. Math. 1, 1–19 (2016)

    Google Scholar 

  36. Abbasbandy, S., Shivanian, E., Vajravelu, K., Kumar, S.: A new approximate analytical technique for dual solutions of nonlinear differential equations arising in mixed convection heat transfer in a porous medium. Int. J. Numer. Methods Heat Fluid Flow 27(2), 486–503 (2017)

    Article  Google Scholar 

  37. Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Liénard’s equation. J. Comput. Appl. Math. 1, 1–14 (2017)

    Google Scholar 

  38. Singh, H.: Solution of fractional Liénard equation using Chebyshev operational matrix method. Nonlinear Sci. Lett. A 8(4), 397–404 (2017)

    Google Scholar 

  39. Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2006–2012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1962–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Nonlinear Mech. 32(5), 815–822 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kumar, S., Kumar, A., Odibat, Z.M.: A nonlinear fractional model to describe the population dynamics of two interacting species. Math. Methods Appl. Sci. 40(11), 4134–4148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Morales-Delgado, V.F., Gómez-Aguilar, J.F., Yépez-Martínez, H., Baleanu, D., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Adv. Differ. Equ. 1, 1–17 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 1, 1–13 (2016)

    MATH  Google Scholar 

  45. Li, C., Kumar, A., Kumar, S., Yang, X.J.: On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method. J. Nonlinear Sci. Appl. 9, 5463–5470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kumar, S., Kumar, A., Argyros, I.K.: A new analysis for the Keller-Segel model of fractional order. Numer. Algorithms 75(1), 213–228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chaudhry, M.H.: Applied Hydraulic Transients, pp. 426–431. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  48. Brown, G.O.: The history of the Darcy-Weisbach equation for pipe flow resistance. Environ. Water Resour. Hist. 1, 34–43 (2003)

    Google Scholar 

  49. Ferrante, M., Brunone, B., Meniconi, S.: Leak detection in branched pipe systems coupling wavelet analysis and a lagrangian model. J. Water Supply Res. Technol.-AQUA 58(2), 95–106 (2009)

    Article  Google Scholar 

  50. Wylie, E.B., Streeter, V.L., Suo, L.: Fluid Transients in Systems. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  51. Gómez-Aguilar, J.F., Baleanu, D.: Solutions of the telegraph equations using a fractional calculus approach. Proc. Rom. Acad. A 15, 27–34 (2014)

    MathSciNet  Google Scholar 

  52. Liénard, A.: Etude des oscillations entretenues. Rev. Gén. Électr. 23, 901–954 (1928)

    Google Scholar 

  53. Gómez-Aguilar, J.F., Rosales-García, J.J., Bernal-Alvarado, J.J., Córdova-Fraga, T., Guzmán-Cabrera, R.: Fractional mechanical oscillators. Rev. Mex. Fis. 58, 524–537 (2012)

    Google Scholar 

  54. Calik, A.E.: Investigation of electrical RC circuit within the framework of fractional calculus. Rev. Mex. Fis. 61, 58–63 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

José Francisco Gómez Aguilar and Lizeth Torres acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014. José Francisco Gómez Aguilar, Lizeth Torres, Ricardo Fabricio Escobar Jiménez and Marco Antonio Taneco Hernández acknowledges the support provided by SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales-Delgado, V.F., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F., Taneco-Hernandez, M.A. (2019). Exact Solutions for the Liénard Type Model via Fractional Homotopy Methods. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics