Skip to main content

New Direction of Atangana–Baleanu Fractional Derivative with Mittag-Leffler Kernel for Non-Newtonian Channel Flow

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

Abstract

This book chapter higlights a new direction of Atangana–Baleanu fractional derivative to channel flow of non-Newtonian fluids. Because the idea to apply fractional derivatives with Mittag-Leffler kernel is a quite new direction for non-Newtonian fluids when flow is in a parallel plate channel. This new and inreresting fractional derivative launched by Atangana and Baleanu with a new fractional operator namely, Atangana–Baleanu fractional operator with Mittag-Leffler function as the kernel of integration has attracted the interest of the researchers. Because this new operator is an efficient tool to model complex and real-world problems. Therefore, this chapter deals with modeling and solution of generalized magnetohydrodynamic (MHD) flow of Casson fluid in a microchannel. The microchannel is taken of infinite length in the vertical direction and of finite width in the horizontal direction. The flow is modeled in terms of a set of partial differential equations involving Atangana–Baleanu time fractional operator with physical initial and boundary conditions. The partial differential equations are transformed to ordinary differential equations via fractional Laplace transformation and solved for exact solutions. To explore the physical significance of various pertinent parameters, the solutions are numerically computed and plotted in different graphs with a physical explanation. The results obtained here may have useful industrial and engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, F., Saqib, M., Khan, I., Sheikh, N.A.: Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model. Eur. Phys. J. Plus 131(10), 1–10 (2016)

    Article  Google Scholar 

  2. Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Solutions with Wright function for time fractional free convection flow of Casson fluid. Arab. J. Sci. Eng. 42(6), 2565–2572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 2016(1), 1–17 (2016)

    Article  MATH  Google Scholar 

  4. Gómez-Aguilar, J.F., Dumitru, B.: Fractional transmission line with losses. Z. für Naturforschung A 69(10–11), 539–546 (2014)

    Article  Google Scholar 

  5. Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., Astorga-Zaragoza, C.M., Reyes-Reyes, J.: Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl. Math. Model. 40(21–22), 9079–9094 (2016)

    Article  MathSciNet  Google Scholar 

  6. Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)

    Article  Google Scholar 

  7. Alegría-Zamudio, M., Escobar-Jiménez, R.F., Gómez-Aguilar, J.F.: Fault tolerant system based on non-integers order observers: application in a heat exchanger. ISA Trans. 80, 286–296 (2018)

    Article  Google Scholar 

  8. Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J. Magn. Magn. Mater. 423, 327–336 (2017)

    Article  Google Scholar 

  9. Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 115, 283–299 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.: Bateman-Feshbach tikochinsky and Caldirola-Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)

    Article  Google Scholar 

  11. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Abundez-Pliego, A.: Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel. Adv. Differ. Equ. 2016(1), 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., Astorga-Zaragoza, C.M., Morales-Mendoza, L.J., González-Lee, M.: Universal character of the fractional space-time electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 29(6), 727–740 (2015)

    Article  Google Scholar 

  14. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Atangana, A., Owolabi, K.M.: New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13(1), 1–13 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–19 (2017)

    Article  Google Scholar 

  17. Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coronel-Escamilla, A., Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Guerrero-Ramírez, G.V.: Triple pendulum model involving fractional derivatives with different kernels. Chaos Solitons Fractals 91, 248–261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Ann. Geophys. 19(4), 383–393 (1966)

    MathSciNet  Google Scholar 

  20. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent–II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  21. Atangana, A., Gómez-Aguilar, J.F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu. Numer. Methods Part. Differ. Equ. 34(5), 1502–1523 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bakkyaraj, T., Sahadevan, R.: Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative. Nonlinear Dyn. 80(1–2), 447–455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saqib, M., Ali, F., Khan, I., Sheikh, N.A., Jan, S.A.A.: Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo-Fabrizio fractional model. Alex. Eng. J. 1, 1–10 (2017)

    Google Scholar 

  25. Sheikh, N.A., Ali, F., Khan, I., Saqib, M.: A modern approach of Caputo-Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium. Neural Comput. Appl. 30(6), 1865–1875 (2018)

    Article  Google Scholar 

  26. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl 1(2), 1–13 (2015)

    Google Scholar 

  27. Atangana, A., Gómez-Aguilar, J.F.: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. Chaos Solitons Fractals 102, 285–294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Phys. A Stat. Mech. Appl. 476, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  29. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  30. Al-Salti, FAMN, Karimov E., Initial and Boundary Value Problems for Fractional differential equations involving Atangana-Baleanu Derivative. arXiv:1706.00740, 2017

  31. Atangana, A., Alqahtani, R.T.: Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative. Entropy 18(2), 1–18 (2016)

    Article  Google Scholar 

  32. Atangana, A., Baleanu, D.: Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143(5), 1–18 (2017)

    Article  Google Scholar 

  33. Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A.: A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. Eur. Phys. J. Plus 132(1), 1–15 (2017)

    Article  Google Scholar 

  34. Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A., Alshomrani, A.S., Alghamdi, M.S.: Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789–800 (2017)

    Article  Google Scholar 

  35. Jan, S.A.A., Ali, F., Sheikh, N.A., Khan, I., Saqib, M., Gohar, M.: Engine oil based generalized brinkman-type nano-liquid with molybdenum disulphide nanoparticles of spherical shape: Atangana-Baleanu fractional model. Numer. Methods Part. Differ. Equ. 34(5), 1472–1488 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saqib, M., Khan, I., Shafie, S.: Application of Atangana-Baleanu fractional derivative to MHD channel flow of CMC-based-CNT’s nanofluid through a porous medium. Chaos Solitons Fractals 116, 79–85 (2018)

    Article  MathSciNet  Google Scholar 

  37. Narahari, M., Pendyala, R.: Exact solution of the unsteady natural convective radiating gas flow in a vertical channel. AIP Conf. Proc. 1557(1), 121–124 (2013)

    Article  Google Scholar 

  38. Seth, G.S., Sharma, R., Kumbhakar, B.: Effects of Hall current on unsteady MHD convective Couette flow of heat absorbing fluid due to accelerated movement of one of the plates of the channel in a porous medium. J. Porous Media 19(1), 13–30 (2016)

    Article  Google Scholar 

  39. Singh, A.K., Gholami, H.R., Soundalgekar, V.M.: Transient free convection flow between two vertical parallel plates. Heat Mass Transf. 31(5), 329–331 (1996)

    Article  Google Scholar 

  40. Saqib, M., Ali, F., Khan, I., Sheikh, N.A.: Heat and mass transfer phenomena in the flow of Casson fluid over an infinite oscillating plate in the presence of first-order chemical reaction and slip effect. Neural Comput. Appl. 30(7), 2159–2172 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Higher Education (MOHE) and Research Management Centre-UTM, Universiti Teknologi Malaysia UTM for the financial support through vote numbers 15H80 and 13H74 for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan .

Editor information

Editors and Affiliations

Appendix-A

Appendix-A

$$\begin{aligned} \varPhi _1(\eta ,t;a,b)=\mathscr {L}\Bigg [\frac{1}{q}\exp \left( -\eta \left( \sqrt{\frac{aq}{q+b}}\right) \right) \Bigg ]=1-\frac{2a}{\pi }\int _{0}^{\infty }\frac{\sin (\eta s)}{s(a+s^2)}\exp \left( -\frac{bts^2}{a+s^2}\right) ds, {(\mathrm{A}1)} \end{aligned}$$
$$\begin{aligned} \varPhi (\eta ,t;a,b)=\mathscr {L}\Bigg [\frac{1}{q}\exp \left( -\eta \left( \sqrt{\frac{aq^\alpha }{q^\alpha +b}}\right) \right) \Bigg ]\nonumber \end{aligned}$$
$$\begin{aligned} =\frac{1}{\pi }\int _{0}^{\infty }\int _{0}^{\infty }\varPhi _1(\eta ,u;a,b)\exp (-\tau -r-ur^\alpha \cos \alpha \pi )(ur^\alpha \sin \alpha \pi )drdu, {(\mathrm{A}2)} \end{aligned}$$
$$\begin{aligned} h(\tau )=\mathscr {L}\left( \frac{1}{q^{1-\alpha }}\right) =\frac{1}{\tau ^\alpha \varGamma (1-\alpha )}, {(\mathrm{A}3)} \end{aligned}$$
$$\begin{aligned} \varPsi _1(\eta ,t;a,b,c)=\mathscr {L}\Bigg [\frac{1}{q}\exp \left( -\eta \sqrt{\frac{aq+b}{q+c}}\right) \nonumber \end{aligned}$$
$$\begin{aligned} =\exp (-\eta \sqrt{a})-\frac{\sqrt{b-ac}}{2\sqrt{\pi }}\int _{0}^{\infty }\int _{0}^{\tau }\frac{1}{\sqrt{t}}\exp \left( -ct-\frac{\eta }{4u}-au\right) I_1(2\sqrt{(b-ac)ut})dtdu, {(\mathrm{A}4)} \end{aligned}$$
$$\begin{aligned} \varPsi (\eta ,t;a,b,c)=\mathscr {L}\Bigg [\frac{1}{q}\exp \left( -\eta \sqrt{\frac{aq^\alpha +b}{q^\alpha +c}}\right) \nonumber \end{aligned}$$
$$\begin{aligned} =\frac{1}{\pi }\int _{0}^{\infty }\int _{0}^{\infty }\varPsi _1(\eta ,u;a,b,c)\exp (-\tau -r-ur^\alpha \cos \alpha \pi )(ur^\alpha \sin \alpha \pi )drdu. {(\mathrm{A}5)} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saqib, M., Khan, I., Shafie, S. (2019). New Direction of Atangana–Baleanu Fractional Derivative with Mittag-Leffler Kernel for Non-Newtonian Channel Flow. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics