Skip to main content

Numerical Solutions and Pattern Formation Process in Fractional Diffusion-Like Equations

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

Abstract

Nowadays, a lot of researchers have challenged the use of classical diffusion equation to model real life situations. To circumvent some of the up-roaring challenges, time and space fractional derivatives have been proposed as alternative to model some anomalous diffusion or related processes where a particle plume spreads at inconsistent rate with the classical Brownian motion model. In this work, we shall consider the general diffusion equations with fractional order derivatives which describe the diffusion in complex systems. Fractional diffusion equation is obtained by allowing the exponent order \(\alpha \) to vary in the intervals (0, 1) and (1, 2) which correspond to subdiffusion and superdiffusion special cases. For the numerical approximations, we propose to use the newly correct version of the Adams-Bashforth scheme which takes into account the nonlinearity of the kernels such as the Mittag-Leffler law for the Atangana-Baleanu case, the power law for the Riemann-Liouville and Caputo derivatives. The efficiency and accuracy of the numerical schemes based on these operators will be justified by reporting their norm infinity and norm relative errors. The complexity of the dynamics in the equations will be discussed theoretically by examining their local and global stability analysis. Our numerical experiment results are expected to give a new direction into pattern formation process in fractional diffusion-like scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atangana, A.: Derivative with a New Parameter: Theory, Methods and Applications. Academic Press, New York (2016)

    Book  MATH  Google Scholar 

  2. Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, New York (2017)

    MATH  Google Scholar 

  3. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  4. Atangana, A., Gómez-Aguilar, J.F.: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. Chaos Solitons Fractals 102, 285–294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atangana, A., Owolabi, K.M.: New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13(1), 1–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  11. Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2, 1–11 (2016)

    Article  Google Scholar 

  12. Cetinkaya, A., Klymaz, O.: The solution of the time-fractional diffusion equation by the generalized differential transform method. Math. Comput. Model. 57, 2349–2354 (2013)

    Article  MATH  Google Scholar 

  13. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.l.: Bateman-Feshbach tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)

    Article  Google Scholar 

  14. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F., Valtierra-Rodríguez, M.: Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order. Phys. A: Stat. Mech. Appl. 487, 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  15. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A: Stat. Mech. Appl. 491, 406–424 (2018)

    Article  MathSciNet  Google Scholar 

  16. Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 115, 283–299 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)

    MATH  Google Scholar 

  18. Fornberg, B.: Calculation of weights in finite difference formulas. SIAM Rev. 40, 685–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gafiychuk, V.V., Datsko, B.Y.: Pattern formation in a fractional reaction diffusion system. Phys. A 365, 300–306 (2006)

    Article  Google Scholar 

  20. Ghanbari, B., Gómez-Aguilar, J.F.: Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives. Chaos Solitons Fractals 116, 114–120 (2018)

    Article  MathSciNet  Google Scholar 

  21. Gnitchogna, R., Atangana, A.: New two step Laplace Adam-Bashforth method for integer a noninteger order partial differential equations. Numer. Methods Partial Differ. Equs. 1, 1–19 (2017)

    MATH  Google Scholar 

  22. Gómez-Aguilar, J.F.: Novel analytical solutions of the fractional Drude model. Optik 168, 728–740 (2018)

    Article  Google Scholar 

  23. Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132, 1–13 (2017)

    Article  Google Scholar 

  24. Gómez-Aguilar, J.F., Dumitru, B.: Fractional transmission line with losses. Zeitschrift für Naturforschung A 69(10–11), 539–546 (2014)

    Article  Google Scholar 

  25. Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equs. 2016(1), 1–17 (2016)

    Article  MATH  Google Scholar 

  26. Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 30(15), 1937–1952 (2016)

    Article  Google Scholar 

  27. Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, J.F.: Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circ. Theor. Appl. 1, 1–22 (2017)

    Google Scholar 

  28. Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Baleanu, D., Khan, H.: Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law. Entropy 19(12), 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  29. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  30. Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Netherlands (2006)

    MATH  Google Scholar 

  33. Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)

    Article  Google Scholar 

  34. Morales-Delgado, V.F., Gómez-Aguilar, J.F., Kumar, S., Taneco-Hernández, M.A.: Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel. Eur. Phys. J. Plus 133(5), 1–20 (2018)

    Google Scholar 

  35. Murray, J.D.: Mathematical Biology I: Spatial Models and Biomedical Applications. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  36. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publication, New York (2006)

    MATH  Google Scholar 

  37. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, New York (2011)

    Book  MATH  Google Scholar 

  38. Owolabi, K.M.: Second or fourth-order finite difference operators, which one is most effective? Int. J. Stat. Math. 1, 44–54 (2014)

    Google Scholar 

  39. Owolabi, K.M.: Robust IMEX schemes for solving two-dimensional reaction-diffusion models. Int. J. Nonlinear Sci. Numer. Simul. 16, 271–284 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Owolabi, K.M.: Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos Solitons Fractals 93, 89–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Owolabi, K.M.: Numerical solution of diffusive HBV model in a fractional medium. Springer Plus 2016, 1–19 (2016)

    Google Scholar 

  42. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simuls. 44, 304–317 (2017)

    Article  MathSciNet  Google Scholar 

  43. Owolabi, K.M.: Mathematical modelling and analysis of two-component system with Caputo fractional derivative order. Chaos Solitons Fractals 103, 544–554 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Owolabi, K.M., Atangana, A.: Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative. Chaos Solitons Fractals 105, 111–119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Owolabi, K.M., Patidar, K.C.: Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Owolabi, K.M., Patidar, K.C.: Numerical solution of singular patterns in one-dimensional Gray-Scott-like models. Int. J. Nonlinear Sci. Numer. Simul. 15, 437–462 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Owolabi, K.M., Patidar, K.C.: Solution of pattern waves for diffusive Fisher-like non-linear equations with adaptive methods. Int. J. Nonlinear Sci. Numer. Simul. 17, 291–304 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. Academic Press, San Diego, Calif, USA (1999)

    MATH  Google Scholar 

  49. Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 5, 1–9 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owolabi, K.M. (2019). Numerical Solutions and Pattern Formation Process in Fractional Diffusion-Like Equations. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics