Skip to main content

Development and Elaboration of a Compound Structure of Chaotic Attractors with Atangana–Baleanu Operator

  • Chapter
  • First Online:
Book cover Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

Abstract

After the finding of the compound structure for standard chaotic attractors, the main concern was related to how to regulate such a fascinating dynamic. Hence, the question about the existence of a compound structure for chaotic attractors generated by fractional systems was raised. In this work, we investigate the existence of compound structure of a chaotic attractor generated from a Atangana–Baleanu fractional system where two cases are studied: the integer case and the fractional one. The model is first solved numerically thanks to the Haar Wavelets scheme whose convergence is proved via error analysis. Numerical simulations are performed and clearly reveal the existence of the desired compound structure in both cases and characterized by the generation of a left-attractor seen as the reflection of a right attractor through the mirror operation. Moreover, those two simple attractors can always be combined together to form the resulting chaotic attractor. The mechanism of forming those simple attractors is shown and leads to a bounded partial attractor. Furthermore, that same mechanism appears to be strongly dependent on two parameters, the model parameter u and the Atangana–Baleanu derivative with order \(\alpha ,\) important in controlling the systems. It is observed that, in the fractional case (\(\alpha =0.9\)), the period-doubling bifurcations start at a higher value of u compared to the integer case (\(\alpha =1\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  2. Doungmo Goufo, E.F. Chaotic processes using the two-parameter derivative with non-singular and nonlocal kernel: basic theory and applications. Chaos: Interdiscip. J. Nonlinear Sci. 26(8), 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, Z., Sun, Y., Van Wyk, B.J., Qi, G., Van Wyk, M.A.: A 3-D four-wing attractor and its analysis. Braz. J. Phys. 39(3), 547–553 (2009)

    Article  Google Scholar 

  4. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MATH  Google Scholar 

  5. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vanecek, A., Celikovsky, S.C.: Control Systems: from Linear Analysis to Synthesis of Chaos. Prentice Hall International (UK) Ltd, Prentice (1996)

    MATH  Google Scholar 

  7. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Özoguz, S., Elwakil, A.S., Kennedy, M.: Experimental verification of the butterfly attractor in a modified lorenz system. Int. J. Bifurc. Chaos 12(07), 1627–1632 (2002)

    Article  Google Scholar 

  9. Lü, J., Zhou, T., Chen, G., Zhang, S.: The compound structure of chen’s attractor. Int. J. Bifurc. Chaos 12(04), 855–858 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Babolian, E., Shahsavaran, A.: Numerical solution of nonlinear fredholm integral equations of the second kind using haar wavelets. J. Comput. Appl. Math. 225(1), 87–95 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Yi, M., Yu, C.: Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J. Comput. Sci. 3(5), 367–373 (2012)

    Article  Google Scholar 

  12. Doungmo Goufo, E.F.: Solvability of chaotic fractional systems with 3D four-scroll attractors. Chaos Solitons & Fractals 104, 443–451 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doungmo Goufo, E.F., Nieto, J.J.: Attractors for fractional differential problems of transition to turbulent flows. J. Comput. Appl. Math. 339, 329–342 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons & Fractals 89, 447–454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  16. Gómez-Aguilar, J.F.: Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A: Stat. Mech. Appl. 494, 52–75 (2018)

    Article  MathSciNet  Google Scholar 

  17. Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–22 (2018)

    Article  Google Scholar 

  18. Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)

    Article  Google Scholar 

  19. Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromag. Waves Appl. 30(15), 1937–1952 (2016)

    Article  Google Scholar 

  20. Ghanbari, B., Gómez-Aguilar, J.F.: Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives. Chaos, Solitons & Fractals 116, 114–120 (2018)

    Article  MathSciNet  Google Scholar 

  21. Gómez-Aguilar, J.F., Dumitru, B.: Fractional transmission line with losses. Zeitschrift für Naturforschung A 69(10–11), 539–546 (2014)

    Google Scholar 

  22. Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 2016(1), 1–17 (2016)

    Article  MATH  Google Scholar 

  23. Gómez-Aguilar, J.F.: Novel analytical solutions of the fractional Drude model. Optik 168, 728–740 (2018)

    Article  Google Scholar 

  24. Yépez-Martínez, H., Gómez-Aguilar, J.F., Sosa, I.O., Reyes, J.M., Torres-Jiménez, J.: The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Rev. Mex. Fís 62(4), 310–316 (2016)

    MathSciNet  Google Scholar 

  25. Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos, Solitons & Fractals 115, 283–299 (2018)

    Article  MathSciNet  Google Scholar 

  26. Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos, Solitons & Fractals 114, 516–535 (2018)

    Article  MathSciNet  Google Scholar 

  27. Saad, K.M., Gómez-Aguilar, J.F.: Analysis of reaction diffusion system via a new fractional derivative with non-singular kernel. Phys. A: Stat. Mech. Appl. 509, 703–716 (2018)

    Article  MathSciNet  Google Scholar 

  28. Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with markovian and non-markovian properties. Phys. A: Stat. Mech. Appl. 505, 688–706 (2018)

    Article  MathSciNet  Google Scholar 

  29. Doungmo Goufo, E.F., Atangana, A.: Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion. Eur. Phys. J. Plus 131(8), 1–26 (2016)

    Article  Google Scholar 

  30. Lepik, Ü., Hein, H.: Haar Wavelets: With Applications. Springer Science & Business Media, Berlin (2014)

    Google Scholar 

  31. Lü, J., Chen, G., Zhang, S.: Dynamical analysis of a new chaotic attractor. Int. J. Bifurc. Chaos 12(05), 1001–1015 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile F. Doungmo Goufo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doungmo Goufo, E.F. (2019). Development and Elaboration of a Compound Structure of Chaotic Attractors with Atangana–Baleanu Operator. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics