Skip to main content

Dynamic Coupling of Near-Field and Far-Field Models

  • Chapter
  • First Online:

Abstract

Deepwater spills pose a unique challenge for reliable predictions of oil transport and fate, since live oil spewing under very high hydrostatic pressure has characteristics remarkably distinct from oil spilling in shallow water. It is thus important to describe in detail the complex thermodynamic processes occurring in the near-field, meters above the wellhead, and the hydrodynamic processes in the far-field, up to kilometers away. However, these processes are typically modeled separately since they occur at different scales. Here we directly couple two oil prediction applications developed during the Deepwater Horizon blowout operating at different scales: the near-field Texas A&M Oilspill Calculator (TAMOC) and the far-field oil application of the Connectivity Modeling System (oil-CMS). To achieve this coupling, new oil-CMS modules were developed to read TAMOC output, which consists of the description of distinct oil droplet “types,” each of specific size and pseudo-component mixture that enters at a given mass flow rate, time, and position into the far field. These variables are transformed for use in the individual-based framework of CMS, where each droplet type fits into a droplet size distribution (DSD). Here we used 19 pseudo-components representing a large range of hydrocarbon compounds and their respective thermodynamic properties. Simulation results show that the dispersion pathway of the different droplet types varies significantly. Indeed, some droplet types remain suspended in the subsea over months, while others accumulate in the surface layers. In addition, the decay rate of oil pseudo-components significantly alters the dispersion, denoting the importance of more biodegradation and dissolution studies of chemically and naturally dispersed live oil at high pressure. This new modeling tool shows the potential for improved accuracy in predictions of oil partition in the water column and of advancing impact assessment and response during a deepwater spill.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bandara UC, Yapa PD (2011) Bubble sizes, breakup, and coalescence in Deepwater gas/oil plumes. J Hydraul Eng 137(7). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000380

    Article  Google Scholar 

  • Berenshtein I, Perlin N, Ainsworth C, Ortega-Ortiz J, Vaz AC, Paris CB (2020) Comparison of the spatial extent, impacts to shorelines and ecosystem, and 4-dimensional characteristics of simulated oil spills (Chap. 20). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills: fighting the next war. Springer, Cham

    Google Scholar 

  • Boehm P, Prince R, Murray K (2020) The importance of understanding transport and degradation of oil and gasses from deep-sea blowouts (Chap. 6). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Boufadel MC, Gao F, Zhao L, Özgökmen T, Miller R, King T, Leifer I (2018) Was the Deepwater Horizon well discharge churn flow? Implications on the estimation of the oil discharge and droplet size distribution. Geophys Res Lett 45(5):2396–2403. https://doi.org/10.1002/2017GL076606

    Article  Google Scholar 

  • Bubenheim P, Hackbusch S, Joye S, Kostka J, Larter SR, Liese A, Lincoln S, Marietou A, Müller R, Noirungsee N, Oldenburg TBP, Radović J, Viamonte J (2020) Biodegradation of hydrocarbons in deep water and sediments (Chap. 7). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Chen F, Yapa PD (2003) A model for simulating deep water oil and gas blowouts – Part II: comparison of numerical simulations with “Deepspill” field experiments. J Hydraul Res 41(4):353–365. https://doi.org/10.1080/00221680309499981

    Article  Google Scholar 

  • Clift R, Grace J, Weber ME (1978) Bubbles, drops, and particles. Dover Publications Inc., Mineola

    Google Scholar 

  • Daly K, Vaz AC, Paris CB (2020) Physical processes influencing the sedimentation and lateral transport of MOSSFA in the northeast Gulf of Mexico (Chap. 18). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills: fighting the next war. Springer, Cham

    Google Scholar 

  • Dissanayake AL, Gros J, Socolofsky SA (2018) Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow. Environ Fluid Mech:1–36. https://doi.org/10.1007/s10652-018-9591-y

    Article  CAS  Google Scholar 

  • Drozd GT, Worton DR, Aeppli C, Reddy CM, Zhang H, Variano E, Goldstein AH (2015) Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways. J Geophys Res Oceans 120:7300–7315. https://doi.org/10.1002/2015JC011093

    Article  CAS  Google Scholar 

  • Fraga B, Stoesser T, CCK L, Socolofsky SA (2016) A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes. Ocean Model 97:27–36. https://doi.org/10.1016/j.ocemod.2015.11.005

    Article  Google Scholar 

  • Gros J, Reddy CM, Nelson RK, Socolofsky SA, Arey JS (2016) Simulating gas-liquid-water partitioning and fluid properties of petroleum under pressure: implications for deep-sea blowouts. Environ Sci Technol 50(14):7397–7408. https://doi.org/10.1021/acs.est.5b04617

    Article  CAS  Google Scholar 

  • Gros J, Socolofsky SA, Dissanayake AL, Jun I, Zhao L, Boufadel MC, Reddy CM, Arey JS (2017) Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proc Natl Acad Sci 114(38):10065–10070. https://doi.org/10.1073/pnas.1612518114

    Article  CAS  Google Scholar 

  • Jaggi A, Snowdon RW, Radović J, Stopford A, Oldenburg TBP, Larter SR (2020) Partitioning of organics between oil and water phases with and without the application of dispersants (Chap. 8). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Jirka GH (2004) Integral model for turbulent buoyant jets in unbounded stratified flows Part 2: plane jet dynamics resulting from multiport diffuser jets. Environ Fluid Mech 6(1):43–100. https://doi.org/10.1007/s10652-005-4656-0

    Article  Google Scholar 

  • Johansen Ø, Rye H, Cooper C (2003) DeepSpill-Field study of a simulated oil and gas blowout in deep water. Spill Sci Technol Bull 8(5–6):433–443. https://doi.org/10.1016/S1353-2561(02)00123-8

    Article  CAS  Google Scholar 

  • Johansen Ø, Brandvik PJ, Farooq U (2013) Droplet breakup in subsea oil releases – Part 2: predictions of droplet size distributions with and without injection of chemical dispersants. Mar Pollut Bull 73(1):327–335. https://doi.org/10.1016/j.marpolbul.2013.04.012

    Article  CAS  Google Scholar 

  • Joye SB, Bracco A, Özgökmen TM, Chanton JP, Grosell M, MacDonald IR, Cordes EE, Montoya JP, Passow U (2016) The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout. Deep-Sea Res II 129:4–19. https://doi.org/10.1016/j.dsr2.2016.04.018

    Article  Google Scholar 

  • Le Hénaff M, Kourafalou VH, Paris CB, Helgers J, Aman ZM, Hogan PJ, Srinivasan A (2012) Surface evolution of the Deepwater Horizon oil spill patch: combined effects of circulation and wind-induced drift. Environ Sci Technol 46(13):7267–7273. https://doi.org/10.1021/es301570w

    Article  CAS  Google Scholar 

  • Lee JHW, Cheung V (1990) Generalized Lagrangian model for buoyant jets in current. J Environ Eng 116:1085–1106

    Article  CAS  Google Scholar 

  • Lee JHW, Chu VH (2003) Turbulent jets and plumes: a Lagrangian approach. Kluwer Academic Publishers Group, Dordrecht

    Book  Google Scholar 

  • Lehr W, Socolofsky S (2020) The importance of understanding fundamental physics and chemistry of deep oil blowouts (Chap. 2). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Li Z, Spaulding ML, French-McCay D (2017) An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions. Mar Pollut Bull 119(1):145–152. https://doi.org/10.1016/j.marpolbul.2017.03.048

    Article  CAS  Google Scholar 

  • Lindo-Atichati D, Paris CB, Le Hénaff M, Schedler M, Valladares Juárez AG, Müller R (2016) Simulating the effects of droplet size, high-pressure biodegradation, and variable flow rate on the subsea evolution of deep plumes from the Macondo blowout. Deep-Sea Res II Top Stud Oceanogr 129:301–310. https://doi.org/10.1016/j.dsr2.2014.01.011

    Article  CAS  Google Scholar 

  • Malone K, Krause D, Pesch S, Schlüter M, Aman Z, Boufadel M (2020) Jet formation at the spill site and resulting droplet size distributions (Chap. 4). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Nissanka ID, Yapa PD (2016) Calculation of oil droplet size distribution in an underwater oil well blowout. J Hydraul Res 54(3):307–320. https://doi.org/10.1080/00221686.2016.1144656

    Article  Google Scholar 

  • North EW, Adams EE, Thessen AE, Schlag Z, He R, Socolofsky S, Masutani SM, Peckham SD (2015) The influence of droplet size and biodegradation on the transport of subsurface oil droplets during the Deepwater Horizon spill: a model sensitivity study. Environ Res Lett 10:024016

    Article  Google Scholar 

  • Okubo A (1987) Fantastic voyage into the deep: marine biofluid mechanics. In: Teramoto E, Yumaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences. Lecture notes in biomathematics, vol 71. Springer, Berlin, Heidelberg

    Google Scholar 

  • Oldenburg TBP, Jaeger P, Gros J, Socolofsky S, Radović J, Jaggi A, Larter SR (2020) Physical and chemical properties of oil and gas under reservoir and deep sea conditions (Chap. 3). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Paris CB, Le Hénaff M, Aman ZM, Subramaniam A, Helgers J, Wang DP, Srinivasan A (2012) Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Environ Sci Technol 46(24):13293–13302. https://doi.org/10.1021/es303197h

    Article  CAS  Google Scholar 

  • Paris CB, Helgers J, van Sebille E, Srinivasan A (2013) Connectivity modeling system: a probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ Model Softw 42:47–54. https://doi.org/10.1016/j.envsoft.2012.12.006

    Article  Google Scholar 

  • Paris CB, Berenshtein I, Trillo ML, Faillettaz R, Olascoaga MJ, Aman ZM, Schlüter M, Joye SB (2018) BP Gulf Science Data Reveals Ineffectual Sub-Sea Dispersant Injection for the Macondo Blowout, Frontiers in Marine Science, section Marine Pollution, accepted October 4, 2018, Manuscript ID: 385346

    Google Scholar 

  • Perlin N, Berenshtein I, Vaz AC, Faillettaz R, Schwing PT, Romero IC, Schlüter M, Liese A, Viamonte J, Noirungsee N, Gros J, Paris CB (2020) Far-field modeling of a deep-sea blowout: sensitivity studies of initial conditions, biodegradation, sedimentation, and subsurface dispersant injection on surface slicks and oil plume concentrations (Chap. 11). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Pesch S, Schlüter M, Aman Z, Malone K, Krause D, Paris CB (2020) Behavior of rising droplets and bubbles – impact on the physics of deep-sea blowouts and oil fate (Chap. 5). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Prosser CM, Redman AD, Prince RC, Paumen ML, Letinski DJ, Butler JD (2016) Evaluating persistence of petroleum hydrocarbons in aerobic aqueous media. Chemosphere 155:542–549. https://doi.org/10.1016/j.chemosphere.2016.04.089

    Article  CAS  Google Scholar 

  • Rahsepar S, MPJ S, Murk AJ, Rijnaarts HHM, Langenhoff AAM (2016) Chemical dispersants: oil biodegradation friend or foe? Mar Pollut Bull 108(1–2):113–119. https://doi.org/10.1016/j.marpolbul.2016.04.044

    Article  CAS  Google Scholar 

  • Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy AS, Camilli R (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci 109(50):20229–20234. https://doi.org/10.1073/pnas.1101242108

    Article  Google Scholar 

  • Reed M, Johansen O, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999) Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5:3–16. https://doi.org/10.1016/S1353-2561(98)00029-2

    Article  Google Scholar 

  • Romero IC, Schwing PT, Brooks GR, Larson RA, Hastings DW, Ellis G, Goddard EA, Hollander DJ (2015) Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon blowout in the northeast Gulf of Mexico. PLoS ONE 10(5):e0128371. https://doi.org/10.1371/journal.pone.0128371

    Article  CAS  Google Scholar 

  • Ryerson TB, Camilli R, Kessler JD, Kujawinski EB, Reddy CM, Valentine DL, Atlas E, Blake DR, de Gout J, Meinardi S, Parrish DD, Peischl J, Seewald JS, Warneke C (2012) Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proc Natl Acad Sci 109(50):20246–20253. https://doi.org/10.1073/pnas.1110564109

    Article  Google Scholar 

  • Schedler M, Hiessl R, Valladares Juárez AG, Gust G, Müller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4(1):1–7. https://doi.org/10.1186/s13568-014-0077-0

    Article  CAS  Google Scholar 

  • Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016) Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:1–14. https://doi.org/10.1038/srep23526

    Article  CAS  Google Scholar 

  • Socolofsky SA, Adams EE (2002) Multi-phase plumes in uniform and stratified crossflow. J Hydraul Res 40(6):661–672

    Article  Google Scholar 

  • Socolofsky SA, Dissanayake AL (2016) Bent plume model source code for the Texas A&M Oilspill Calculator (TAMOC). Center for the Integrated Modeling and Analysis of Gulf Ecosystems II (C- IMAGE II), Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC). https://data.gulfresearchinitiative.org/data/R4.x267.000:000333

  • Socolofsky SA, Adams EE, Sherwood CR (2011) Formation dynamics of subsurface hydrocarbon intrusions following the deepwater horizon blowout. Geophys Res Lett 38(9):L09602

    Article  Google Scholar 

  • Socolofsky SA, Adams EE, Boufadel MC, Aman ZM, Johansen Ø, Konkel WJ, Lindo D, Madsen MN, North EW, Paris CB, Rasmussen D, Reed M, Rønningen P, Sim LH, Uhrenholdt T, Anderson KG, Cooper C, Nedwed TJ (2015) Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection. Mar Pollut Bull 96(1–2):110–126. https://doi.org/10.1016/j.marpolbul.2015.05.039

    Article  CAS  Google Scholar 

  • Stout SA, Payne JR, Emsbo-Mattingly SD, Baker G (2016) Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill. Mar Pollut Bull 105(1):7–22. https://doi.org/10.1016/j.marpolbul.2016.02.044

    Article  CAS  Google Scholar 

  • Turner JS (1968) The influence of molecular diffusivity on turbulent entrainment across a density interface. J Fluid Mech 33:639–656

    Article  Google Scholar 

  • Wang B, Socolofsky SA, CCK L, Adams EE, Boufadel MC (2018) Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts. Mar Pollut Bull 131:72–86. https://doi.org/10.1016/j.marpolbul.2018.03.053

    Article  CAS  Google Scholar 

  • Yapa PD, Zheng L, Chen F (2001) A model for Deepwater oil/gas blowouts. Mar Pollut Bull 43(7–12):234–241. https://doi.org/10.1016/S0025-326X(01)00086-8

    Article  CAS  Google Scholar 

  • Yapa PD, Dasanayaka LK, Bandara UC, Nakata K (2010) A model to simulate the transport and fate of gas and hydrates released in deepwater. J Hydraul Res 48(5):559–572. https://doi.org/10.1080/00221686.2010.507010

    Article  Google Scholar 

  • Zhao L, Boufadel MC, Socolofsky SA, Adams EE, King T, Lee K (2014) Evolution of droplets in subsea oil and gas blowouts: development and validation of the numerical model VDROP-J. Mar Pollut Bull 83(1):58–69. https://doi.org/10.1016/j.marpolbul.2014.04.020

    Article  CAS  Google Scholar 

  • Zhao L, Boufadel MC, Adams EE, Socolofsky SA, King T, Lee K, Nedwed T (2015) Simulation of scenarios of oil droplet formation from the Deepwater Horizon blowout. Mar Pollut Bull 101(1):304–319. https://doi.org/10.1016/j.marpolbul.2015.10.068

    Article  CAS  Google Scholar 

  • Zhao L, Boufadel MC, King T, Robinson B, Gao F, Socolofsky SA, Lee K (2017) Droplet and bubble formation of combined oil and gas releases in subsea blowouts. Mar Pollut Bull 120(1–2):203–216. https://doi.org/10.1016/j.marpolbul.2017.05.010

    Article  CAS  Google Scholar 

  • Zheng L, Yapa PD, Chen F (2003) A model for simulating deepwater oil and gas blowouts - part I: theory and model formulation. J Hydraul Res 41(4):339–351. https://doi.org/10.1080/00221680309499980

    Article  Google Scholar 

  • Zick AA (2013) Equation-of-State Fluid Characterization and Analysis of the Macondo Reservoir Fluids; Expert report prepared on behalf of the United States; TREX-011490R; (evidence in the United States of America v. BP Exploration & Production, Inc., et al. case). (30)

    Google Scholar 

Download references

Acknowledgments

This research was made possible by a from the Gulf of Mexico Research Initiative/C-IMAGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Vaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaz, A.C., Paris, C.B., Dissanayake, A.L., Socolofsky, S.A., Gros, J., Boufadel, M.C. (2020). Dynamic Coupling of Near-Field and Far-Field Models. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_9

Download citation

Publish with us

Policies and ethics