Skip to main content

The Importance of Understanding Transport and Degradation of Oil and Gasses from Deep-Sea Blowouts

  • Chapter
  • First Online:
Deep Oil Spills

Abstract

Assessing the environmental impact of spilled oil and gas requires an understanding of both the petroleum’s movement and the physical and chemical changes it undergoes after the release. Deep subsea releases differ from surface releases primarily because of the extended interaction of the oil and gas with the water column prior to atmospheric exposure. Furthermore, the remote locations and uncertain volumes of deep subsea oil and gas releases result in logistical challenges to data collection both during and after a release. However, there have been multiple subsea releases with large-scale environmental investigations, and the extensive investigation undertaken during and after the Deepwater Horizon (DWH) spill resulted in an especially comprehensive empirical data set. The specific chemical and physical properties of the oil and gas mixtures in subsea releases differ between spills, and the DWH investigation and others have highlighted the importance of understanding biodegradation rates and transport to offshore sediments. The field and experimental data collected during and after a spill can improve oil fate prediction when incorporated into comprehensive oil spill models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46(16):8799–8807

    Article  CAS  Google Scholar 

  • American Petroleum Institute (2011) Robust summary of information on substance: crude oil, CAS No. 8002-05-9

    Google Scholar 

  • Asper VL, Deuser W, Knauer G, Lohrenz SE (1992) Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature 357(6380):670

    Article  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in US history. Environ Sci Technol 45:6709–6715

    Article  CAS  Google Scholar 

  • Atlas RM, Stoeckel DM, Faith SA, Minard-Smith A, Thorn JR, Benotti MJ (2015) Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the Deepwater horizon well blowout. Environ Sci Technol 49(14):8356–8366

    Article  CAS  Google Scholar 

  • Audunson T (1980) The fate and weathering of surface oil from the Bravo blowout. Mar Environ Res 3(1):35–61

    Article  Google Scholar 

  • Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL (2017) Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proc Natl Acad Sci 114(1):E9–E18

    Article  CAS  Google Scholar 

  • Barrera D, Ortiz D, Yarranton H (2013) Molecular weight and density distributions of asphaltenes from crude oils. Energy Fuel 27(5):2474–2487

    Article  CAS  Google Scholar 

  • Boehm PD, Fiest DL (1979) Surface water column transport and weathering of petroleum hydrocarbons during the IXTOC-I blowout in the Bay of Campeche and their relation to surface oil and microlayer compositions. In: Proceedings of a symposium on preliminary results from the September, 1979. pp 267–338

    Google Scholar 

  • Boehm PD, Fiest DL (1980) Aspects of the transport of petroleum hydrocarbons to the offshore benthos during the IXTOC-I blowout in the Bay of Campeche. In: Proceedings of Conference on Researcher/Pierce IXTOC-I Cruises. National Oceanographic and Atmospheric Administration, AOML, Miami

    Google Scholar 

  • Boehm PD, Fiest DL (1982) Subsurface distributions of petroleum from an offshore well blowout. The Ixtoc I blowout, Bay of Campeche. Environ Sci Technol 16(2):67–74. https://doi.org/10.1021/es00096a003

    Article  CAS  Google Scholar 

  • Boehm PD, Neff JM, Page DS (2007) Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989–2005. Mar Pollut Bull 54(3):339–356. https://doi.org/10.1016/j.marpolbul.2006.11.025

    Article  CAS  Google Scholar 

  • Boehm PD, Page DS, Brown JS, Neff JM, Bragg JR, Atlas RM (2008) Distribution and weathering of crude oil residues on shorelines 18 years after the Exxon Valdez spill. Environ Sci Technol 42(24):9210–9216

    Article  CAS  Google Scholar 

  • Boehm PD, Gundlach ER, Page DS (2013) The phases of an oil spill and scientific studies of spill effects. Cambridge University Press, New York

    Book  Google Scholar 

  • Boehm PD, Murray KJ, Cook LL (2016) Distribution and attenuation of polycyclic aromatic hydrocarbons in Gulf of Mexico seawater from the Deepwater Horizon oil accident. Environ Sci Technol 50(2):584–592

    Article  CAS  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368(6470):413

    Article  CAS  Google Scholar 

  • Brakstad OG, Nordtug T, Throne-Holst M (2015) Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar Pollut Bull 93(1–2):144–152

    Article  CAS  Google Scholar 

  • Brakstad OG, Lewis A, Beegle-Krause C (2018a) A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Mar Pollut Bull 135:346–356

    Article  CAS  Google Scholar 

  • Brakstad OG, Ribicic D, Winkler A, Netzer R (2018b) Biodegradation of dispersed oil in seawater is not inhibited by a commercial oil spill dispersant. Mar Pollut Bull 129(2):555–561

    Article  CAS  Google Scholar 

  • Brakstad OG, Størseth TR, Brunsvik A, Bonaunet K, Faksness L-G (2018c) Biodegradation of oil spill dispersant surfactants in cold seawater. Chemosphere 204:290–293

    Article  CAS  Google Scholar 

  • Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, Rutgers van der Loeff M, Sarin M (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65(3):345–416

    Article  CAS  Google Scholar 

  • Burns KA, Jones R (2016) Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea. Environ Pollut 211:214–225

    Article  CAS  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science. https://doi.org/10.1126/science.1195223

    Article  CAS  Google Scholar 

  • Cho Y, Birdwell JE, Hur M, Lee J, Kim B, Kim S (2017) Extension of the analytical window for characterizing aromatic compounds in oils using a comprehensive suite of high-resolution mass spectrometry techniques and double bond equivalence versus carbon number plot. Energy Fuel 31(8):7874–7883

    Article  CAS  Google Scholar 

  • Chanton J, Cherrier J, Wilson R, Sarkodee-Adoo J, Bosman S, Mickle A, Graham W (2012) Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environ Res Lett 7(4):045303

    Article  CAS  Google Scholar 

  • Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, Yeager KM, Diercks AR, Hollander D (2014) Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environ Sci Technol 49(2):847–854

    Article  CAS  Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, M. Piceno Y, Reid FC, Stringfellow WT (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47(19):10860–10867

    Article  CAS  Google Scholar 

  • Fernández-Carrera A, Rogers K, Weber S, Chanton J, Montoya J (2016) Deep Water Horizon oil and methane carbon entered the food web in the Gulf of Mexico. Limnol Oceanogr 61(S1):S387

    Article  CAS  Google Scholar 

  • Fingas M, Fieldhouse B (2004) Formation of water-in-oil emulsions and application to oil spill modelling. J Hazard Mater 107(1–2):37–50

    Article  CAS  Google Scholar 

  • Gros J, Nabi D, Würz B, Wick LY, Brussaard CP, Huisman J, van der Meer JR, Reddy CM, Arey JS (2014) First day of an oil spill on the open sea: Early mass transfers of hydrocarbons to air and water. Environ Sci Technol 48(16):9400–9411

    Article  CAS  Google Scholar 

  • Gros J, Reddy CM, Nelson RK, Socolofsky SA, Arey JS (2016) Simulating gas–liquid− water partitioning and fluid properties of petroleum under pressure: implications for deep-sea blowouts. Environ Sci Technol 50(14):7397–7408

    Article  CAS  Google Scholar 

  • Gros J, Socolofsky SA, Dissanayake AL, Jun I, Zhao L, Boufadel MC, Reddy CM, Arey JS (2017) Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proc Natl Acad Sci 114(38):10065–10070

    Article  CAS  Google Scholar 

  • Gundlach ER, Boehm PD, Marchand M, Atlas RM, Ward DM, Wolfe DA (1983) The fate of Amoco Cadiz oil. Science 221(4606):122–129

    Article  CAS  Google Scholar 

  • Gutierrez T, Teske A, Ziervogel K, Passow U, Quigg A (2018) Microbial exopolymers: sources, chemico-physiological properties, and ecosystem effects in the marine environment. Front Microbiol 9:1822

    Article  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208

    Article  CAS  Google Scholar 

  • Helm J, Wendlandt KD, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105(4):1054–1061

    Article  CAS  Google Scholar 

  • Hernández-López E, Ayala M, Vazquez-Duhalt R (2015) Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol 33(9):1017–1029

    Article  CAS  Google Scholar 

  • Hornafius JS, Quigley D, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res Oceans 104(C9):20703–20711

    Article  CAS  Google Scholar 

  • Houma ICP Aerial Dispersant Group (2010) After action report Deepwater horizon MC252 aerial dispersant response

    Google Scholar 

  • Hu P, Dubinsky EA, Probst AJ, Wang J, Sieber CM, Tom LM, Gardinali PR, Banfield JF, Atlas RM, Andersen GL (2017) Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proc Natl Acad Sci 114(28):7432–7437

    Article  CAS  Google Scholar 

  • Jaggi A, Snowdon RW, Stopford A, Radović JR, Oldenburg TB, Larter SR (2017) Experimental simulation of crude oil-water partitioning behavior of BTEX compounds during a deep submarine oil spill. Org Geochem 108:1–8

    Article  CAS  Google Scholar 

  • Jernelöv A, Lindén O (1981) Ixtoc I: a case study of the world’s largest oil spill. Ambio 10(6):299–306

    Google Scholar 

  • Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA, Weber TC (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312–315. https://doi.org/10.1126/science.1199697

    Article  CAS  Google Scholar 

  • Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill—past, present, and future perspectives. Front Microbiol 5:603

    Article  Google Scholar 

  • Lehr W, Socolofsky SA (2020) The importance of understanding fundamental physics and chemistry of deep oil blowouts (Chap. 2). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Levy E, Lee K (1988) Potential contribution of natural hydrocarbon seepage to benthic productivity and the fisheries of Atlantic Canada. Can J Fish Aquat Sci 45(2):349–352

    Article  CAS  Google Scholar 

  • Loh A, Shim WJ, Ha SY, Yim UH (2014) Oil-suspended particulate matter aggregates: Formation mechanism and fate in the marine environment. Ocean Sci J 49(4):329–341

    Article  CAS  Google Scholar 

  • MacDonald IR, Garcia-Pineda O, Beet A, Asl SD, Feng L, Graettinger G, French-McCay D, Holmes J, Hu C, Huffer F (2015) Natural and unnatural oil slicks in the Gulf of Mexico. J Geophys Res Oceans 120(12):8364–8380

    Article  CAS  Google Scholar 

  • Maltrud M, Peacock S, Visbeck M (2010) On the possible long-term fate of oil released in the Deepwater Horizon incident, estimated using ensembles of dye release simulations. Environ Res Lett 5(3):035301

    Article  CAS  Google Scholar 

  • Marietou A, Chastain R, Scoma A, Hazen TC, Bartlett DH (2018) The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 9:808

    Article  Google Scholar 

  • McDonnell AM, Buesseler KO (2010) Variability in the average sinking velocity of marine particles. Limnol Oceanogr 55(5):2085–2096

    Article  Google Scholar 

  • McFarlin KM, Perkins MJ, Field JA, Leigh MB (2018) Biodegradation of crude oil and Corexit 9500 in arctic seawater. Front Microbiol 9:1788

    Article  Google Scholar 

  • Mille G, Munoz D, Jacquot F, Rivet L, Bertrand J-C (1998) The Amoco Cadiz oil spill: evolution of petroleum hydrocarbons in the Ile Grande salt marshes (Brittany) after a 13-year period. Estuar Coast Shelf Sci 47(5):547–559

    Article  CAS  Google Scholar 

  • Murray KJ, Boehm PD (2017) Towards an understanding of the evolution (Fate and Transport) of the 2010 Deepwater Horizon oil spill. In: International oil spill conference proceedings, 2017. International oil spill conference, pp 536–555

    Article  Google Scholar 

  • Murray KJ, Brown JS, Cook LL, Boehm PD (2017) Fingerprinting of weathered oil residues from the Deepwater Horizon oil spill: the importance of multiple lines of investigation. In: International oil spill conference proceedings, 2017. International oil spill conference, pp 3051–3070

    Article  Google Scholar 

  • Neff JM, Bence AE, Parker KR, Page DS, Brown JS, Boehm PD (2006) Bioavailability of polycyclic aromatic hydrocarbons from buried shoreline oil residues thirteen years after the Exxon Valdez oil spill: a multispecies assessment. Environ Toxicol Chem 25(4):947–961

    Article  CAS  Google Scholar 

  • Nguyen UT, Lincoln SA, Juárez AGV, Schedler M, Macalady JL, Müller R, Freeman KH (2018) The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PLoS One 13(7):e0199784

    Article  CAS  Google Scholar 

  • NOAA (2018a) Ekofisk Bravo oil field. https://incidentnews.noaa.gov/incident/6237. Accessed 19 Aug 2018

  • NOAA (2018b) Santa Barbara well blowout. https://incidentnews.noaa.gov/incident/6206#!513759. Accessed 19 Aug 2018

  • Owens EH, Sergy GA (2003) The development of the SCAT process for the assessment of oiled shorelines. Mar Pollut Bull 47(9–12):415–422

    Article  CAS  Google Scholar 

  • Page DS, Foster JC, Fickett PM, Gilfillan ES (1989) Long-term weathering of Amoco Cadiz oil in soft intertidal sediments. In: International oil spill conference, 1989. American Petroleum Institute, pp 401–405

    Google Scholar 

  • Passow U (2016) Formation of rapidly-sinking, oil-associated marine snow. Deep Sea Res Part II Top Stud Oceanogr 129:232–240. https://doi.org/10.1016/j.dsr2.2014.10.001

    Article  CAS  Google Scholar 

  • Poulsen M, Lemon L, Barker JF (1992) Dissolution of monoaromatic hydrocarbons into groundwater from gasoline-oxygenate mixtures. Environ Sci Technol 26(12):2483–2489

    Article  CAS  Google Scholar 

  • Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49(11):6376–6384

    Article  CAS  Google Scholar 

  • Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17. alpha.(H)-21. beta.(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28(1):142–145

    Article  CAS  Google Scholar 

  • Prince RC, Garrett RM, Bare RE, Grossman MJ, Townsend T, Suflita JM, Lee K, Owens EH, Sergy GA, Braddock JF (2003) The roles of photooxidation and biodegradation in long-term weathering of crude and heavy fuel oils. Spill Sci Technol Bull 8(2):145–156

    Article  CAS  Google Scholar 

  • Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FC, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521–526

    Article  CAS  Google Scholar 

  • Prince RC, Nash GW, Hill SJ (2016) The biodegradation of crude oil in the deep ocean. Mar Pollut Bull 111(1–2):354–357

    Article  CAS  Google Scholar 

  • Prince RC, Butler JD, Redman AD (2017) The rate of crude oil biodegradation in the sea. Environ Sci Technol 51(3):1278–1284

    Article  CAS  Google Scholar 

  • Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci 109(50):20229–20234

    Article  CAS  Google Scholar 

  • Redmond MC, Valentine DL (2011) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences: 201108756

    Google Scholar 

  • SL Ross Environmental Research (2010) Spill related properties of MC 252 crude oil, sample ENT-052210-178. Appendix 8 to oil budget calculator: Deepwater Horizon. Technical documentation. A report to the national incident command

    Google Scholar 

  • Sørensen L, Melbye AG, Booth AM (2014) Oil droplet interaction with suspended sediment in the seawater column: influence of physical parameters and chemical dispersants. Mar Pollut Bull 78(1–2):146–152

    Article  CAS  Google Scholar 

  • Spaulding M, Li Z, Mendelsohn D, Crowley D, French-McCay D, Bird A (2017) Application of an integrated blowout model system, OILMAP DEEP, to the Deepwater Horizon (DWH) spill. Mar Pollut Bull 120(1–2):37–50

    Article  CAS  Google Scholar 

  • Spier C, Stringfellow WT, Hazen TC, Conrad M (2013) Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environ Pollut 173:224–230

    Article  CAS  Google Scholar 

  • Spies RB, Mukhtasor M, Burns KA (2017) The montara oil spill: a 2009 well blowout in the Timor Sea. Arch Environ Contam Toxicol 73(1):55–62

    Article  CAS  Google Scholar 

  • Storrie J (2011) Montara wellhead platform oil spill–a remote area response. In: International oil spill conference proceedings (IOSC), 2011. American Petroleum Institute, p abs159

    Google Scholar 

  • Stout SA, Payne JR (2016) Macondo oil in deep-sea sediments: part 1–sub-sea weathering of oil deposited on the seafloor. Mar Pollut Bull 111(1–2):365–380

    Article  CAS  Google Scholar 

  • Stout SA, Payne JR, Ricker RW, Baker G, Lewis C (2016) Macondo oil in deep-sea sediments: Part 2—distribution and distinction from background and natural oil seeps. Mar Pollut Bull 111(1–2):381–401

    Article  CAS  Google Scholar 

  • Stout SA, Rouhani S, Liu B, Oehrig J, Ricker RW, Baker G, Lewis C (2017) Assessing the footprint and volume of oil deposited in deep-sea sediments following the Deepwater Horizon oil spill. Mar Pollut Bull 114(1):327–342

    Article  CAS  Google Scholar 

  • Straughan D, Kolpack RL (1971) Biological and oceanographical survey of the Santa Barbara Channel oil spill, 1969–1970, vol 1. Allan Hancock Foundation, University of Southern California

    Google Scholar 

  • Swift W, Touhill C, Haney W, Nakatani R, Peterson P (1969) Review of Santa Barbara Channel Oil Pollution Incident. BATTELLE-NORTHWEST RICHLAND WASH PACIFIC NORTHWEST LAB

    Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27(1):57–102

    Article  Google Scholar 

  • Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr 130:205–248

    Article  Google Scholar 

  • U.S. Senate (2010) Review of the use of dispersants in response to the Deepwater Horizon oil spill. Subcommittee of the Committee on Appropriations, One Hundred Eleventh Congress, Second Session edn. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208–211

    Article  CAS  Google Scholar 

  • Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, Woo MA (2014) Fallout plume of submerged oil from Deepwater Horizon. Proc Natl Acad Sci 111(45):15906–15911

    Article  CAS  Google Scholar 

  • Wade TL, Sericano JL, Sweet ST, Knap AH, Guinasso NL Jr (2016) Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. Mar Pollut Bull 103(1–2):286–293

    Article  CAS  Google Scholar 

  • Wakeham WA, Cholakov GS, Stateva RP (2002) Liquid density and critical properties of hydrocarbons estimated from molecular structure. J Chem Eng Data 47:559–570

    Article  CAS  Google Scholar 

  • Wang J, Sandoval K, Ding Y, Stoeckel D, Minard-Smith A, Andersen G, Dubinsky EA, Atlas R, Gardinali P (2016) Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Sci Total Environ 557:453–468

    Article  CAS  Google Scholar 

  • Ward CP, Sharpless CM, Valentine DL, French-McCay DP, Aeppli C, White HK, Rodgers RP, Gosselin KM, Nelson RK, Reddy CM (2018) Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil. Environ Sci Technol 52(4):1797–1805

    Article  CAS  Google Scholar 

  • Yang T, Nigro LM, Gutierrez T, Joye SB, Highsmith R, Teske A (2016) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Res II Top Stud Oceanogr 129:282–291

    Article  CAS  Google Scholar 

  • Ziervogel K, D’souza N, Sweet J, Yan B, Passow U (2014) Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico. Front Microbiol 5:188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen J. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murray, K.J., Boehm, P.D., Prince, R.C. (2020). The Importance of Understanding Transport and Degradation of Oil and Gasses from Deep-Sea Blowouts. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_6

Download citation

Publish with us

Policies and ethics