Skip to main content

Clustering Representative Electricity Load Data Using a Particle Swarm Optimization Algorithm

  • Chapter
  • First Online:
Metaheuristics Algorithms in Power Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 822))

Abstract

The increasing deployment of smart meters to collect load profile data in real-time is generating new opportunities for analysing electric power distribution system. Storing, managing and analysing large volumes of collected data, however, is challenging. Measured data is high-dimensional in nature and may contain hidden information and complex patterns that need to be interpreted. In this chapter, a method that combines dimensionality reduction (DR) technique with Particle Swarm Optimization (PSO) algorithm for clustering load profile electricity data is presented. The DR techniques allows to obtain a low-dimensional data model that can be used to project representative electricity load (REL) data onto an easily interpretable 3D space. The PSO algorithm and a validation index algorithm is then applied to obtain an optimal number of clusters. The presented framework methodology is applied to clustering historical REL data. The REL data allows to evaluate the ability of linear and nonlinear DR techniques to extract the relevant information that may be useful to visualize and improve the clustering data process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Granell, C.J. Axon, D.C.H. Wallom, Impacts of raw data temporal resolution using selected clustering methods on residential electricity load profiles. IEEE Trans. Power Syst. 30(6), 3217–3224 (2015)

    Article  Google Scholar 

  2. G. Chicco, R. Napoli, P. Postolache, M. Scutriu, C. Toader, Customer characterization options for improving the tariff offer. IEEE Trans. Power Syst. 18(1), 381–387 (2003)

    Article  Google Scholar 

  3. G. Chicco, Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42(1), 68–80 (2012)

    Article  Google Scholar 

  4. A. Morán, J.J. Fuertes, M.A. Prada, S. Alonso, P. Barrientos, I. Díaz, in Analysis of Electricity Consumption Profiles by Means of Dimensionality Reduction Techniques. EANN International Conference on Engineering Applications of Neural Networks, London, UK, pp. 152–161 (2012)

    Chapter  Google Scholar 

  5. L. Van der Maaten, E. Postman, J. can den Herik, Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10, 1–41 (2009)

    Google Scholar 

  6. G. Chicco, R. Napoli, F. Piglione, Comparisons among clustering techniques for electricity customer classification. IEEE Trans. Power Syst. 21(2), 933–940 (2006)

    Article  Google Scholar 

  7. M. Sun, I. Konstantelosy, G. Strbac, C-Vine copula mixture model for clustering of residential electrical load pattern data. IEEE Trans. Power Syst. 32(3), 2382–2393 (2017)

    Article  Google Scholar 

  8. G. Chicco, O.M. Ionel, R. Porumb, Electrical load pattern grouping based on centroid model with ant colony clustering. IEEE Trans. Power Syst. 28(2), 1706–1715 (2013)

    Article  Google Scholar 

  9. F. Lezama, A. Rodriguez, E. Muñoz de Cote, L. Sucar, in Electrical Load Pattern Shape Clustering Using Ant Colony Optimization. European Conference on the Applications of Evolutionary Computation (Springer, Cham, 2016), pp. 491–506

    Chapter  Google Scholar 

  10. E.K. Cervera, E. Barocio, F.R. Sevilla Segundo, P. Korba, R.J. Betancourt, Particle swarm intelligence optimization approach for clustering of low and high dimensional databases. Submitted at IEEE general meeting (2019)

    Google Scholar 

  11. J. Wu, Advances in K-Means Clustering (Springer theses, China, 2012). H. Ward, Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)

    Google Scholar 

  12. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithm (Plenum, New York, 1981)

    Book  Google Scholar 

  13. Y.H. Pao, D.J. Sobajic, Combines use of unsupervised and supervised learning for dynamic security assessment. IEEE Trans. Power Syst. 7(2), 878–884 (1992)

    Article  Google Scholar 

  14. I.T. Jolliffe, in Springer Series in Statistic, 2nd edn. Principal Component Analysis (New York, 1986), pp. 32–500

    Google Scholar 

  15. N.R. Sakthivel, B.B. Nair, M. Elangovan, V. Sugumaran, S. Saravanmurugan, Comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifugal pump using vibrations signals. Elsevier Eng. Sci. Technol. Int. J. (2014)

    Google Scholar 

  16. A. Arechiga, E. Barocio, J. Ayon, H. Garcia, in Comparison of Dimensionality Reduction Techniques for Clustering and Visualization of Load Profiles. IEEE PES T&D-LA, in Proc. (2016)

    Google Scholar 

  17. J. Leeuw, W. Heiser, in Theory of Multidimensional Scaling. Handbook of Statistics, vol. 2, pp. 285–316 (1982)

    Google Scholar 

  18. E.W. Dijkstra, A note on two problems in conexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  19. G. Hinton, S. Roweis, in Stochastic Neighbor Embedding. Advances in Neural Information Processing System, vol. 15, MA. pp. 833–840 (2002)

    Google Scholar 

  20. L. Wang, T.V.U. Nguyen, J.C. Bezdek, C. Leckie, K. Ramamohanarao, in iVAT and aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment. Proc. PAKDD, Hyderabad, India, June 2010

    Chapter  Google Scholar 

  21. J.C. Bezdek, R.J. Hathaway, in VAT: a Tool for Visual Assessment of Cluster Tendency. Proceedings of the 2002 International Joint Conference on Neural Networks, Honolulu, HI, pp. 2225–2230 (2002)

    Google Scholar 

  22. A. Chatterjee, P. Siarry, Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimizacion. Comput. Oper. Res. 33, 859–871 (2006)

    Article  Google Scholar 

  23. Q. Zhao, P. Fränti, WB-index: a sum-of-squares based index for cluster validity. Data Knowl. Eng. 92, 77–89 (2014)

    Article  Google Scholar 

  24. http://www.ercot.com/mktinfo/loadprofile

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Barocio Espejo, E., Conde Enríquez, A. (2019). Clustering Representative Electricity Load Data Using a Particle Swarm Optimization Algorithm. In: Metaheuristics Algorithms in Power Systems. Studies in Computational Intelligence, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-030-11593-7_8

Download citation

Publish with us

Policies and ethics